IB Math 1 Counting and Factorial Notes

Warm Up

Simplify:
$$\frac{2^{n+3} - 2^n}{14} = \frac{2^n \cdot 2^n - 2^n}{14}$$
$$= \frac{2^n (2^3 - 1)}{14}$$
$$= \frac{2^n (7)}{14} = \frac{2^n}{2} = 2^{n-1}$$

Example 1

Barney has 8 shirts, 5 pairs of pants, and 2 pairs of shoes.

a. How many outfits can Barney create?

b. How many ways can he choose an item to donate?

Example 2

Dara's Deli has a menu consisting of 5 sandwiches, 4 salads, 7 drinks, 3 cakes, and 2 cookies. Customers can get a combo for \$6 as follows:

1 sandwich		1 salad		1 sandwich
and		and		and
1 drink	or	1 drink	or	1 salad
and		and		and
1 cake		1 cookie		1 cookie

How many ways can a combo be chosen?

$$5.7.3 + 4.7.2 + 5.4.2$$
 $105 + 56 + 40$

Example 3

Using the digits 1-7, how many 4 digit numbers are there if...

a. repeats allowed

b. no repeats

c. start with an odd # with repeats

d. end in an even # with repeats?

$$\frac{7 \cdot 7 \cdot 7 \cdot 3}{\text{tower}} = 1029$$

e. end in an even # without repeats?

Factorials!

$$1! = 1$$

$$0! = 1$$

4.3.2.1

* By definition

Example 4

Simplify:
$$\frac{7! - 6!}{3!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 - 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}$$
$$= (7 - 1) 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$
$$= (6) 6 \cdot 5 \cdot 4$$
$$= 720$$

Example 5

$$(n+1)!-(n-1)!$$

$$\frac{(n+1)! - (n-1)!}{n!}$$

$$\frac{(n+1) n (n-1) (n-2) \cdots 3 \cdot 2 \cdot 1}{n (n-1) (n-2) \cdots 3 \cdot 2 \cdot 1} - \frac{(n-1) (n-2) \cdots 3 \cdot 2 \cdot 1}{(n-1)!}$$

$$\frac{(n+1) n (n-1)!}{n (n-1)!} - \frac{(n-1)!}{n (n-1)!}$$

$$\frac{(n+1) n - 1}{n (n-1)!} = \frac{n^2 + n - 1}{n}$$

$$\frac{8A(2-7)}{8C.1(2-6)}$$