IB MM3 3-D Intersecting Planes Name

» Two planes in space could have any of the foliowing three arrangements:

(1) intersecting (2} parallel (3) coincident
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¢ Three planes in space could have any of the following eight arrangements:
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(4) two parallel and (5) all three parallel (6) all meet at the one
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(7) all meetina " (8) the line of intersection of any two"

common line _ * is parallel to the third plane.
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USING ROW OPERATIONS TO SOLVE A 3 x3 SYSTEM

ar+bhyteaz=d

A general 3 x 3. system in variables z, ¥, and z has the form asx + by + e3z = dy
asx + b3y +c3z=1d3

where the coefficients of z, y, and 2 are constants.
ar b ooy d is the system’s ,augmented S

az bz ¢z | dg matrix form which we need
ag by ¢z | ds to reduce to echelon form:
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