No Calculators!!

Simplify as much as possible.

1.
$$\frac{5^{n+3} + 5^{n-1}}{5^{n+1}}$$

$$\frac{1}{8}$$

$$\frac{1}{3}$$

3.
$$4^{n} \left(\frac{n-2}{n}\right) - 4^{n+1} \left(\frac{n+1}{n}\right)$$

$$= \frac{4^{n}}{n} \left(\frac{n+2}{n}\right) - 4^{n+1} \left(\frac{n+1}{n}\right)$$

$$= \frac{4^{n}}{n} \left(\frac{n+2}{n}\right) - 4^{n+1} \left(\frac{n+1}{n}\right)$$

$$= \frac{4^{n}}{n} \left(\frac{n+2}{n}\right) - 4^{n+1} \left(\frac{n+1}{n}\right)$$

Solve for x.

1.
$$\left(\frac{1}{3}\right)^{x+2} = \sqrt[4]{3}$$

3.
$$5^x - 2(5^x) - 80 = 0$$

2.
$$8^{(3-x)} = \left(\frac{1}{32}\right)^{2x+5}$$

4.
$$7^x - 7^{x+1} = -12$$

- 5. Given $y = 2^{-x} 5$.
- a) Sketch the graph showing the x-intercept, y-intercept, and the horizontal asymptote.

Domesia	DER	$(-\infty)$	do)
Ranga	4 - 5		(A)

c) Write the equation of the horizontal asymptote.

6. Find the equation of the function and describe the transformation of the parent function $y = a^x$, where a is a positive integer.

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{1}{2} + \frac{1}{6} + \frac{1}$$