IB Math HL2:  Maclaurin Polynomial 



Name: _____________ Period: _______

Group Activity:  Work with your group members
Reminder:  Use group voice and make sure all your group members are in same pace as you.
Part I:  Discovering another function similar to a polynomial within a limited x interval. 
1.  Graph the function
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 in your Graphing Utility using the window: 
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2.  Describe the graph of f(x).  What other function does this remind you of?  Name this other function, g(x).
3.  Graph f(x) and g(x) simultaneously at the following window and determine the interval of x for which g(x) is approximately same as f(x).  
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g(x) is approximately equal to f(x) in the x interval [         ,         ]
Part II:  Developing a polynomial function.

1.  Using the following clues, find a third degree polynomial function; 
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Work:  
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Part III:  Estimating 
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 where h(x) is unknown function.

1. Your teacher is thinking a function and wants you and your partner to calculate the value of the function at 
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with the given clues.  The function is not polynomial, but has the following properties as the follows:
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Now, pretend the function is a 4th degrees of polynomial, h(x), and find the polynomial that satisfies the above conditions.  
	2. Then find 
[image: image11.wmf](0.5)

h

.  How close do you think 
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 is to the actual function value at 
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3. Check with your teacher (by raising your hand) and graph both the 
function and the polynomial at the provided window. 
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	Part IV:  Given the function:
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1. What is the equation of the line tangent to 
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?  Graph the tangent line and 
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	2. Find the second degree polynomial 
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Which will imitate 
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.  Graph p(x) and 
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3.  Compare the errors of the linear and quadratic polynomials as they approximate 
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Part V:  Maclaurin Polynomial

1.  Investigations of  Part II and III both involved finding a polynomial given only derivatives values.  Now derive a general polynomial to imitate a function 
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 about the point 
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.  A polynomial of this type is called a MacLaurin Polynomial. 
a)  The line tangent to 
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is the first degree polynomial at 
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b)  Let’s call the quadratic polynomial;  
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c) Guess the 3rd degree polynomial 
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2.  The formula of Maclaurin Polynomial for 
[image: image37.wmf]()

n

px

, where 
[image: image38.wmf]nZ

+

Î

is:
            
[image: image39.wmf]2'''34

0

"(0)(0)(0)(0)

()(0)'(0).......

2!3!4!!

ivkk

n

k

fxfxfxfx

pxffx

k

¥

=

=++++=

å


3.  Practice Problems:  

a. Write the Maclaurin series for 
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b.  Write the Maclaurin series for
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, And then the series of  
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