
IB Math HL 1

Introduction to Limits

On your GFC, plot the graph of $f(x) = \frac{x^2 - 1}{x - 1}$ Sketch the result. $f(x) = \frac{1^2 - 1}{1 - 1} = \frac{Q}{Q}$

und	efred	-
5	00	<u>∞</u>
0		
	indek	minaut
	form	^

x approaches 1	
	x approaches 1

x	0.8	0.9	0.99	0.999	1	1.001	1.01	1.1	1.2
f(x)	1.8	1.9	1.99	1.999	ordel	2.001	2.01	2.1	2.2

Pre-Calculus Question: What feature does the graph of f(x) have at x = 1? A hole removable discontinuity

Calculus Question: What is the **limit** of f(x) as x approaches 1?

Same question in Calculus notation: $\lim_{x \to 1} f(x) = 2$

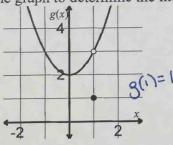
Informal Definition of Limit #1:

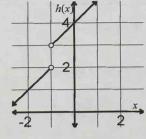
What y-value does f(x) get close to as x approaches c?

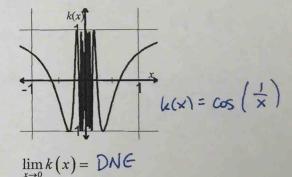
Close: as close as you need to be convinced of the result

Approaches: closer and closer but not actually there*

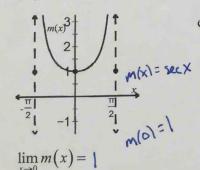
*This means that, for the purpose of this limit, we don't care what f(c) is or if it exists.

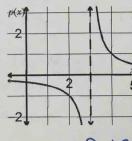

Informal Definition of Limit #2:


What is going on with the value of f(x) in a neighborhood of x = c?


4. Use the graph to determine the indicated limit.

a.


d.



$$\lim_{x\to 1}g(x)=3$$

 $\lim_{x\to -1}h(x)=\mathsf{DNG}$

$$\lim_{x\to 3} p(x) = \mathcal{D} \mathcal{N} \mathcal{E}$$