14A and 14B Vectors, Scalars, and Operations

Scalar: a quantity that has only magnitude

Vector: a quantity that has magnitude and direction

A vector is represented by a directed line segment (aka, arrow)

- The magnitude is indicated by the length of the arrow.
- The direction is indicated by the arrow.

Ex: Area, speed, distance

Ex: Force, velocity, displacement

Ex: Joe pushes a cart Northeast with a force of 50N.

Notation

Using points: PQ "vector PQ"

- The vector that starts at P and ends at Q.
- The position vector of Q relative to P.

Lower case letter

- Textbook: r
- Handwritten: r

The position vector of point A:

- The vector from O (origin) to point A: \overrightarrow{OA}
- $\overrightarrow{OA} = \overrightarrow{a}$

Properties Equal Vectors

Same magnitude

same direction

Parallel Vectors

same or opposite

Multiplication by a Scalar

Negative Vector

Zero Vector

Ex: Sheila runs east 4 km and south 2 km

Ex: Blue Bus starts in town P, goes to town Q, then to town R. Red Bus goes straight from P to R.

Vector Addition "Tip to Tail"

Construct geometrically:

$$1. a+b$$

3.
$$3b - 2a$$

4. Write a vector equation for this diagram.

a. Write \overline{AC} in terms of \mathbf{t} and \mathbf{u} .

b. Write \overrightarrow{AC} in terms of s and v.

c. Write s in terms of the other vectors.