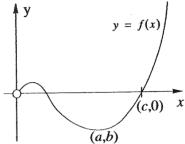
Name:

1.

The function y = f(x) satisfies the differential equation

$$x \cdot \frac{dy}{dx} - \sqrt{x^2 - y^2} = y, x > 0.$$

- a. i. Using the substitution y = vx, show that $\frac{dv}{dx} = \frac{\sqrt{1-v^2}}{x}$.
 - ii. Hence show that if y = 0 when x = 1, then the solution to the original d.e. is given by $y = x \sin(\ln x)$, x > 0.
- b. Part of the graph of y = f(x) is shown below,
 - i. If c > 0.5, find its smallest value.
 - ii. Find the exact value of a and b.
- c. i. Show that for $0 < x \le 1$, the x-intercepts form a geometric sequence and state the common ratio.
 - ii. Find the sum of all x-intercepts for 0 < x < 1.



2.

• a. A tank initially contains 10 kg of dissolved salt in 300 litres of water. The solution runs out at the rate of 3 litres/min. Fresh water is added into the tank at the same rate.

Let x kg of salt be present in the tank at any time t minutes.

- i. Find the concentration of salt in the tank at any time t minutes.
- ii. Find the rate, in kg/min, at which salt runs out of the tank.
- iii. Set up the differential equation for the amount of salt in the tank at any time t minutes.
- iv. Solve this d.e. and find how long it takes for the concentration of salt in the tank to reach 40% of its initial concentration.

b. A

A salt solution of 0.2 kg/litre is now entering the tank and the solution runs in and out at the same rate as before.

- i. Set up the differential equation for this situation.
- ii. Assuming the same initial conditions as in part a., how much salt will there be in the tank after 2 hours?
- c. Assume that for the situation described in part b., the rate at which the salt/water solution runs in is 2 litres/min but still runs out at 3 litres/min. Set up, but do not solve the differential equation that models this situation.