The Binomial Distribution

Bernoulli Trials: Trials of only two mutually exclusive possible outcomes.

$$P(X = x) = \binom{n}{x} (p)^{x} (1-p)^{n-x}$$

Where n is the number of trials, p is the probability of a success, and 1-p is the probability of a failure.

 $X \sim B(n, p)$ X is distributed binomially with parameters n and p.

Expected Value and Variance of Binomial Distribution

- E(x) = np
- Var(x) = np(1-p)

Ex) If
$$X \sim B(5, 0.6)$$
, find $P(x = 4)$.

$$1=5, p=0.6 \Rightarrow p(x=4) = {5 \choose 4} (0.6)^{4} (0.4)^{5-4} = 0.2592.$$

$$= \frac{162}{625}$$

Ex) A manufacture finds that 30% of the items produced from one of the assembly lines are defective. During a floor inspection, the manufacturer selects 10 items from this assembly line. Find the probability that the manufacturer finds.

- a) Two defectives
- b) At least two defectives.
- c) Find E(x).
- d) Find the standard Deviation.

$$A) p(x=2) = {\binom{10}{2}} (0.3)^{2} (0.7)^{8}.$$

()
$$E(x) = (10)(0.3) = 3$$

6)
$$P(2 \le x \le 10) = 1 - P(x=0) - P(x=1)$$

= $1 - {\binom{10}{0}}(0.3)^{0}(0.7)^{0} - {\binom{10}{1}}(0.3)^{0}(0.7)^{0}$

Ex) The random variable X is such that E(x) = 8 and Var(x) = 4.8. Find P(x = 3).

(Binomial Didibution)

(Binomial Distribution)
$$(8)(1-p)=4.8$$

 $D = E(x) = 0.p = 8$
 $(1-p)=4.8$
 $(1-p)=4.8$
 $(2) Van(x) = 0.p.(1-p)=4.8$
 $(3)(1-p)=4.8$
 $(4)(1-p)=4.8$
 $(4)(1-p)=4.8$

0=1-4.8=0.4.

$$8 = h(0.4) = h = \frac{8}{0.4} = \frac{80}{4} = 20$$

$$P = 0.4, \quad h = 20 \Rightarrow P(x=3) = {20 \choose 3}(0.4)^3(0.6)^{20-3}$$

$$= (0.0/235)$$

Poisson Distribution

The distribution of the number of events in a "random process".

Examples:

Random Process	Event
Telephone calls in a fixed time interval	Number of wrong calls in an hour (Time dependent)
Accident in a factory	Number of Accident in a day (Time dependent)
Flaws in a glass Panel	Number of flaws per square cm (Area dependent)
Bacteria in Milk	Number of bacteria per 2 liter (Volume dependent)

- An event is as likely to occur in one given interval as it is in another.
- Events occur uniformly is proportional to the size of the time interval, area, or volume.

The Poisson distribution formula:

$$P(X = x) = \frac{e^{-\mu}\mu^{x}}{x!}$$
 where $\mu = \lambda t$ and $x = 0, 1, 2, 3, ...$

$$= \frac{e^{-m} m^{x}}{x!}$$

The Poisson Notation:

 $X \sim P_{\bullet}(\lambda t)$: The random variable x has a poisson distribution with parameter λt .

$$X \sim P_o(m)$$
 Where λ is a rate per unit and t is a time interval.

$$h = H = Rt$$

• X is the number of event in a time interval of length t with rate λ per unit time

Expected Value and Variance of the Poisson Distribution

$$E(x) = \mu$$
 and $Var(x) = \mu$

Binomial Distribution.

$$P(x) = {n \choose x} P^{x} (1-P)^{n-x} \qquad E(x) = M = n \cdot P$$

$$= \frac{n!}{(n-x)! \times !} \left(\frac{M}{n}\right)^{x} \left(1-\frac{M}{n}\right)^{n-x}$$

$$= \frac{n(n-1)(n-2)\cdots(n-x)!}{(n-x)! \times !} \left(\frac{M^{x}}{n^{x}}\right) \left(\frac{n-M}{n}\right)^{n} \left(\frac{n-M}{n}\right)^{-x}.$$

$$= \frac{n(n-1)(n-2)\cdots(n-x)!}{(n-x)! \times !} \left(\frac{M^{x}}{n^{x}}\right) \left(1-\frac{M}{n}\right)^{n} \left(\frac{n^{x}}{n-M}\right)^{x}$$

$$= \frac{n(n-1)(n-2)\cdots(n-(x-n))!}{(n-M)^{x}} \cdot \frac{M^{x}}{x!} \left(1-\frac{M}{n}\right)^{n}$$

$$P(x) = \frac{\left(\frac{n(n-1)(n-2) \cdot (n-(x-1))}{(n-x)}\right)}{\left(\frac{n(n-1)(n-2) \cdot (n-(x-1))}{(n-x)}\right)} = \frac{\left(\frac{n(n-1)(n-2) \cdot (n-(x-1))}{(n-x)}\right)}{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)}{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)}{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-1)(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} = \frac{\left(\frac{n(n-x)}{(n-x)}\right)}{\left(\frac{n(n-x)}{(n-x)}\right)} =$$

2) Derive $E(x) = \mu$ for the Poisson Distribution.

Binomial:
$$E(x) = \Lambda \cdot \rho$$

$$poisson: \sum \chi \cdot \rho = \sum_{\chi=1}^{\infty} \chi \cdot \frac{e^{-\mu} \cdot \mu^{\chi}}{\chi^{1/2}}$$

$$poisson: \sum \chi \cdot \rho = \sum_{\chi=1}^{\infty} \chi \cdot \frac{e^{-\mu} \cdot \mu^{\chi}}{\chi^{1/2}}$$

- Ex) Faults occur on a piece of string at an average rate of one every three meters. Bobbins, each containing 5 meters of this string, are to be used. What is the probability that a randomly selected bobbin will contain.
 - Two faults. a.

b. At least two faults.

$$P(x \ge 2) = -\frac{3}{3} (\frac{3}{3}) \approx 0.262 = \frac{5}{3}.$$

$$= -\frac{5}{3} (\frac{3}{3}) \approx 0.262 = \frac{5}{3}.$$
Ex) A radioactive source emits particles at an average rate of one every 12 seconds. Find the probability that at most 5 particles are emitted in one minute.

a) $P(x=2) = C^{-m} \cdot m^2$

Ex) A radioactive source emits particles at an average rate of one every 12 seconds. Find the probability that at most 5 particles are emitted in one minute.

$$M = (\frac{1}{12})(60) = \frac{10}{2} = 5.$$

$$X \land P_{0}(5) \Rightarrow P(6 \le X \le 5) = (\frac{C^{-5})(5)}{+} + (\frac{C^{-5} \cdot 5'}{1!})$$

$$+ (\frac{C^{-5} \cdot 5'}{2!}) + (\frac{C^{-5} \cdot 5'}{5!})$$

Ex) A typist finds that they make two mistakes, on average, every three pages. Assuming that the number of errors per page follows a poisson distribution, what are the chances that there will be 2 mistakes in the next page they type?