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The Birthday Paradox 
 

“​The laws of probability, so true in general, so fallacious in particular.” 
Edward Gibbon 

 
Introduction 

To begin, I would like to begin with a question: what is the minimum number of people 
needed in a group for there to be more than a 50% chance of at least two people sharing the 
same birthday? Well, you may think that because there are 365 days in a year (not including 
leap days), it must be somewhere 180 people. While, on the surface level, it may seem logical, 
this could not be further from the truth. I will be straightforward. The answer is 23 people. It may 
seem rather strange and counter-intuitive at first, but when the math demonstrated, you will 
realize that this number is actually rather reasonable. This situation is known as the ​birthday 
paradox​. It is not called a paradox because there is something about it that is contradictory to 
the natural world, it is very much naturally reasonably. The reason it is referred to as a paradox 
is because the conclusion of 23 people counters the human mind’s innate ability at estimation 
and probability. 

The aim of this exploration is to understand the solution behind the birthday paradox. 
However, because this is a very specific example, I will aim to also create an equation that will 
be able to approximate the probability of at least 2 people in any size group sharing the same 
birthday in a year of a length of any days. This equation will also approximate situations not just 
pertaining to people sharing birthdays. For instance, I will aim to use my approximation to 
predict the probability of at least two people in a table group of 4 in our math class sharing the 
same day of the week they were born on, as well as the probability that at least 2 people in my 
math class of 25 people share a birthday. 
 
 
Why is the answer 23 people? 

To begin, simply figuring out the probability that at least two people share the same 
birthday in a group is challenging, and the calculations would be tedious. This is where the 
complement rule​ is applied. Before explaining this, some notation needs to be explained. (E)P
represents the probability of an event occurring, with denoting probability and denoting()P E  
the event. is the probability of the opposite of the event occurring, or in other words, the(E )P ′  
probability of the event not occurring. The complement rule states that (E) (E )P + P ′ = 1
(Kernler). Translated into words, the probability of an event happening or the same event not 
happening must be 100%, for there is no way for something to both not occur and not ​not 
occur. One or the other must happen.  With this in mind, we can apply this to the birthday 
paradox. 

Let’s begin by finding the probability of two people sharing the same birthday. According 
to the complement rule, the opposite event would be that the two people don’t share a birthday. 
So, if  a birthday shared, then  Starting with the first person, how manyE = (E) (E ).P = 1 − P ′  
valid birth dates can the first person have while meeting the conditions? At this point, no birth 
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dates have been taken, so the first person can have any of the 365 dates. This can be written 
as the fraction The second person, on the other hand, must choose any date that is not the.365

365  
birth date of the first person. Hence, he can choose only 364 of the 365 available dates, or in a 
fraction, Now that we have the possible cases of each of the two people, we can multiply.365

364  
them together to get the probability that the two people do not share a birthday. 

(E )P ′ = 365
365 × 365

364 = 133225
132860 → 365

364  
(E) .274%P = 1 − 365

364 → 1
365 ≈ 0  

Therefore, the probability of two people sharing the same birthday is about 0.274%. 
If we were to calculate the probability for a group of three, the fractions for the first and 

second person would be the same, and  respectively. The third person would have 363365
365 ,365

364  
out of 365 birth dates to choose, as 2 dates have already been chosen by the first and second 
person. The calculations, therefore, are as follows: 

(E )P ′ = 365
365 × 365

364 × 365
363 = 133225

132132  
(E) .820%P = 1 − 133225

132132 ≈ 0  
So, the probability of at least two people sharing the same birthday in a group of three is 
0.820%. 

With the two calculations of shown above, we can see a pattern forming. With(E ) P ′  
every new person in a group, the number of birth dates available to them decreases by .1

365

Therefore, if we assign the variable to be the number of people in a group, we can make thisp   
equation: 

(E ) ...P ′ = 365
365 × 365

365 − 1 × 365
365 − 2 × 365

365 − p + 1  
In this equation, the product of the numerators is the number of ways that n people in a group 
can all have a different birthday, while the product of the denominators is the number of total 
arrangements that n people in a group can have a birthday. The denominator is simply 65 .3 n

This follows the pattern of the sample calculations shown above. Below is a graph showing the 
progression of as the number of people,  increases. A table is also available in appendix(E)P ,n  
A. 
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As seen by the graph above, when there are 23 people in a group, is 50.73%. When(E)P  
calculated this way, we can see that this problem is almost no different from any other 
probability problem of similar situations. It is the scope of the problem that makes our minds 
overestimate the solution. In fact, the number of people required for there to be at least a 99.9% 
chance that a birthday is shared is actually only 70 people! 

This problem demonstrates something fascinating about our perception of probability. 
Our minds think rather linearly, and we cannot estimate things on an exponential level. This is 
why the everyday person is such an awful gambler. People simply cannot calculate the odds 
with precision, yet we still have confidence in them. The birthday paradox is a harmless 
example of how our minds can trick us into misjudging the natural odds because of our simple, 
linear thinking. However, when facing situations in which something could be lost, whether it be 
money or even your life, these linear estimations may be costly. The birthday paradox teaches 
us that we must not come to immediate assumptions in life, but to stop and think deeper and 
analyze a situation to truly be able to go against the odds. This is why this topic captivated me 
so much. It forces us to think harder at how the world works, and proves that our perception of 
the world is not always so accurate. 

With the math behind the solution of 23 people in mind, we can create an equation that 
can be used to approximate any situation similar to this. The following section will discuss how 
this is derived. 
 
An Approximation 

In order to understand where this approximation comes from, we must first be introduced 
to the ​Taylor series​. A Taylor series is meant to be a representation of a function about a point 

This may be a bit confusing to understand, so I will provide the general equation.x = a  
(Weisstein). 

(x) (a)(x ) (x ) (x ) (x ) (x ) ... (x ) ...f = f − a 0 + 1!
f (a)′ − a 1 + 2!

f (a)′′ − a 2 + 3!
f (a)′′′ − a 3 + 4!

f (a)′′′′ − a 4 + n!
f (a)(n)

− a n  
With every term added onto the series, the summation becomes closer and closer to the actual 
function.  

When we call the Taylor series for a function with this condition a ​MacLaurin,a = 0  
series​. Below is the MacLaurin Series for as every nth term is added. Below is a graph(x)f = ex  
of the MacLaurin Series of as its degree of approximation increases. As you can, as the ex n
increases, the degree of the series increases, as well as its accuracy at approximating the 
actual function. 
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For our approximation we will be using a MacLaurin series, as the goal of our 
approximation is to be as simple as possible while still retaining accuracy to the 0.5%, and the 
MacLaurin Series usually creates the simplest form of a Taylor Series. In line with this rule of 
simplicity, we will keep our MacLaurin series to a ​first-order approximation​, which is the sum 
of the first two terms of the series (Pfleuger). 

There are two commonly MacLaurin series that are simple enough to be used for an 
approximation. They have been written out below (Girardi). 

...1
1−x = 1 + x + x2 + x3  

...ex = 1 + x + 2
x2 + 6

x3  
When both series are turned into first order approximations, both functions are approximated 
down to  So, because both first-order approximations are identical, now we must ask:.1 + x  
which one should be chosen? Which one is more viable? Well, we already have simplicity met 
as a criterion, so we need to see which one is more accurate. For this, consider the graph on 
the following page. 

 
As we can see from the graph, it is very clear that  approximates more accurately. Thus,1 + x ex  
our approximation will be: 

ex ≈ 1 + x  
It is important to note that past  this approximation will begin to become inaccurate. This− ,x = 1  
will not be a worry for us, however, as we will see later on. 

Recall in the previous section when we discussed how the solution of 23 people is 
found. The first person had a choice of 365 out of 365 days, the second person had a choice of 
364 out of 365 days, all the way until the nth person has 365 - p + 1 out of 365 days. Well, the 
fractions  and  can easily be rewritten as and So what, ,365

365  365
364

365
365 − p + 1 ,1 − 0

365 ,1 − 1
365 .1 − 365

p − 1  
is important about this? If we rewrite the fractions in this manner, it can be used in our 
approximation. For example, if we were to calculate percentage of days that the second person 
can choose out of the 365 days available, the approximation would be as follows. 

hen n ,W = 2  365
365 − n + 1 = 365

364 → 1 − 1
365  

ex ≈ 1 + x  
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herefore, x −T  = 1
365  

e −1
365 ≈ 1 − 1

365  
.997264 .9972600 ≈ 0  

As you can see, this approximation was very accurate, with the actual value being 99.726%, 
while the approximation gave 99.7264%. This was much more accurate than the aimed 0.5% 
accuracy. 

Something also very important has also been found. Because we can approximate the 
percentage of birth dates each person in a group can choose from out of 365, we can 
approximate the equation we found in the section “Why is the answer 23 people?”! We(E )P ′  
can thus generalize one person’s fraction of birth dates available for them to be: 

hen n ,W = a + 1  365
365 − n + 1 = 365

365 − (a + 1)  + 1 = 365
365 − a → 1 − a

365  

 
 ex = 1 + x  

herefore, x −T  = a
365  

e− a
365 ≈ 1 − a

365  
With all of this in mind, the approximation is beginning to come together. To start, let us find the 
approximation of the probability of 2 people sharing the same birthday in a group of 3. 

et pL = 3  
(E ) 1 )(1 )...(1 )P ′ = ( − 0

365 − 1
365 − 365

p − 1  
(E ) 1 )(1 )(1 )P ′ = ( − 0

365 − 1
365 − 2

365  
(E) (E )P = 1 − P ′  

(E) .00820417P = 0  
e− a

365 ≈ 1 − a
365  

) 1 )(1 )(1 )1 e− ( − 0
365 × e− 1

365 × e− 2
365  ≈ 1 − ( − 0

365 − 1
365 − 2

365  
.00818549 .008204170 ≈ 0  

So the actual probability was about 0.8204%, and we approximated it to 0.8185%. The 
difference in these values is just 0.0019%! The goal of being within 0.5% of the actual 
probability was absolutely reached for this case. A table of actual probabilities can be found 
under Appendix B. 

We are now able to make our general approximation. For this we will be forgoing the 
denominator of 365 for the variable  for number of days in the year.d  

et d =L / 0  
(E ) 1 )(1 )(1 )...(1 )P ′ = ( − d

0 − d
1 − d

2 − d
p − 1  

e− d
a ≈ 1 − d

a  
... 1 )(1 )(1 )... 1 )e− d

0 × e− d
1 × e− d

2 × e− d
p − 1

≈ ( − d
0 − d

1 − d
2 × ( − d

p − 1  
(E ) ...P ′ ≈ e− d

0 × e− d
1 × e− d

2 × e− d
p − 1

 
From here, we can use one of the exponent laws to simplify the above equation down 
(Exponent Laws). 

xxa b = xa+b  
herefore, P (E )T  ′ ≈ e− d

0+1+2...+ p−1
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The final component is to simplify our numerator. Luckily there is a way to do so. The formula for 
the sum of first n positive integers is: 

∑
n

i=1
n = 2

n(n+1)  

Thus: 
et nL = p − 1  
(E )P ′ ≈ e− 2d

p(p−1)
 

(E) (E )P = 1 − P ′  
(E)P = 1 − e− 2d

p(p−1)
 

And so we have derived our approximation! In order to check validity, I will be plugging in when 
and both when  As usual, the table of actual probabilities are in Appendix3p = 2 0,p = 7 65.d = 3  

B. We should get somewhere around 0.5 and 0.999, respectively. 
et p 3 and d 65L = 2 = 3  

(E)P ≈ 1 − e− 730
23×22  

(E) − 5000017 or 50.00017%P ≈ .  
et p 0 and d 65L = 7 = 3  

(E) .99866 or 99.866%P ≈ 0  
When p = 23, the approximation was off by about 0.73%, while when p = 70, it was off by only 
0.02%. So while approximation does not always hit within the 0.5% margin of error that we were 
aiming for, it definitely is still able to create some very accurate probabilities without having to 
take any powers of 365, which would be ridiculous. Overall, do I believe that this approximation 
produces reasonable results? Given its simplicity, I would say that it definitely creates accurate 
results, and that it would be an equation that is appropriate to use if needed to approximate any 
situation similar to the birthday paradox. 
 
Applying the Approximation to our Math Class 

In this section, I will be using this approximation to find two statistics. First, the likelihood 
that at least two people in my math class, which as 25 people. Second, the likelihood that at 
least two of the four people in my table group in math class were born on the same day of the 
week. For the first one, we simply plug in and 5p = 2 65.d = 3  

(E) .5604P ≈ 1 − e− 730
25×24 ≈ 0  

So it seems like the odds are in our favor that someone shares the same birthday. However, 
that is not the case for our class. 

For the second statistic, but instead of 365 days, we only have 7 days, so ,p = 4 .d = 7  
(E) .5756P ≈ 1 − e− 14

4×3 ≈ 0  
Again, the odds seem to be slightly in our favor. So let’s see anybody does share a birthday. 
The four birthdays at our table are August 16, 2000, August 26, 2000, October 28, 2000, and 
November 3, 2000. The day of the week these days land on are Wednesday, Saturday, 
Saturday, and Friday. Well, two people, in fact, do share a same “birth day of the week”! While 
this does not prove that the probability is about 57.6%, it does demonstrate that there is a bit of 
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validity to this. In order to fully verify this approximation, however, it would require a very large 
sample size that would be very difficult to acquire. 
 
 
Limitations 

Of course, this approximation and the calculations made have some drawbacks. The 
main problem with this is that it assumes that all birthdays are equal. This, of course, is not the 
case. According to the New York Times, the most common birthday is September 16th, and the 
least common birthday is, obviously, February 29th, otherwise known as Leap Day. In order to 
properly calculate the probability of there being a shared birthday, the distribution of birth dates 
must be taken into account, which will significantly change how the probability is calculated. In 
addition, it does not consider Leap Day. This can be solved, if we disregard uneven birth date 
distribution, with changing to 366 when using situations involving days in a year.d  
 
Real-World Applications 

Surprisingly, this paradox actually has some applications in the real world. One of the 
main areas that it has significance in is cryptography, which is the study of writing and solving 
codes. It is used in something called a collision attack, which determines whether two inputs on 
a table containing code known as a cryptographic hash result in the same value (Batista). This 
is important for solving codes which involve hashes. Some other ways it is used is to evaluate 
the randomness of a PRNG (pseudo random number generator), and to optimize 
communicating nodes’ power consumption in a wireless network. The latter application ensures 
that there are no nodes. 
 
Conclusion 

In conclusion, our aim of understanding how the birthday paradox is solved, as well as 
finding an accurate approximation for any situation similar to it was achieved. In terms of global 
perspective, I believe that this is not something that is of any historical perspective, but instead 
a lesson in our human intuition. We like to believe that as the most intelligent species on Earth 
that our assumptions are mostly correct. This birthday paradox completely shatters this 
expectation, and teaches us that we cannot simply rely on our minds to realize the reality of our 
surroundings. Despite how complex our minds are and how far we have come, we still fail to 
answer a question that seems as simple as the birthday paradox. We see this exploitation of our 
human instinct everywhere, at casinos, restaurants, even while driving. I think that the main 
thing that this paradox has done was humble me and how I think. It taught me to be more 
careful when analyzing a situation, and not to jump to conclusions so quickly. Even when you 
think you know the answer, the birthday paradox has taught me that it is best if you stop and 
think before you make a decision. Sometimes, even the human mind can falter. 
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Appendix B 
Table 1: Number of People vs Probability of at least 2 People Sharing a Birthday 

Number of People Probability of at least 2 People Sharing a Birthday 

1 0 

2 0.00274 

3 0.0082 

4 0.01636 

5 0.02713 

6 0.04046 

7 0.05624 

8 0.07434 

9 0.09462 

10 0.11695 

11 0.14114 

12 0.16703 

13 0.19441 

14 0.2231 

15 0.2529 

16 0.2836 

17 0.31501 

18 0.34691 

19 0.37912 

20 0.41144 

21 0.44369 

22 0.4757 

23 0.5073 

24 0.53834 

25 0.5687 

26 0.59824 

27 0.62686 

28 0.65446 

29 0.68097 

30 0.70632 

31 0.73046 

32 0.75335 

33 0.77497 

34 0.79532 

35 0.81438 

36 0.83218 

37 0.84873 

38 0.86407 

39 0.87822 

40 0.89123 

41 0.90315 

42 0.91403 

43 0.92392 

44 0.93289 
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45 0.94098 

46 0.94825 

47 0.95477 

48 0.9606 

49 0.96578 

50 0.97037 

51 0.97452 

52 0.97808 

53 0.9812 

54 0.98393 

55 0.98631 

56 0.98837 

57 0.99016 

58 0.99169 

59 0.99301 

60 0.99414 

61 0.99511 

62 0.99592 

63 0.99662 

64 0.9972 

65 0.9976 

66 0.9981 

67 0.99845 

68 0.99873 

69 0.99897 

70 0.99916 

 


