

- ◆ Paper 1 Review ◆ No calculator allowed [worked solutions included]
- 1. Find the set of values of x for which $(e^x 2)(e^x 3) \le 2e^x$.
- 2. Given that $3x^2 kx + 12$ is positive for all values of x, find the range of possible values for k.
- 3. Find the value(s) of m so that the equation $mx^2 mx + 1 = 0$ has exactly one real root.
- 4. Find all real solutions for the equation $x = \sqrt{x+5} 3$.
- 5. Solve the inequality $2|x+3| \le x+15$.
- 6. Find the range of values of k for which y = 2x + k and $x^2 + y^2 = 4$ do no intersect.
- 7. Find the **exact** solution(s) to the equation $8e^2 2e \ln x = (\ln x)^2$.
- 8. Find the quadratic equation having the roots 1+5i and 1-5i.
- 9. One root of the equation $x^2 + ax + b = 0$, where a and b are real constants, is 2+3i. Find the value of a and the value of b.
- **10.** Find the square roots of 3+4i.

Worked Solutions

[note: although these are non-calculator questions some of the answers have been confirmed using a TI-84 GDC – which is good practice because it's possible that these questions could be on Paper 2]

1. Find the set of values of x for which $(e^x - 2)(e^x - 3) \le 2e^x$.

The left side is easily expand ... $(e^x - 2)(e^x - 3) = e^{2x} - 5e^x + 6$... Now, make the right side zero – and can already see that the final expression on the left side will factor quite nicely.

 $e^{2x} - 7e^x + 6 \le 0 \implies (e^x - 6)(e^x - 1) \le 0$... use a 'sign chart' when does $e^x - 6 = 0$? $\Rightarrow x = \ln 6 \approx 1.79$ when does $e^x - 1 = 0$? $\Rightarrow x = 0$

		$0 \qquad \ln 6$	
$e^x - 6$	neg.	neg.	pos.
$e^{x}-1$	neg.	pos.	pos.
$(e^x-6)(e^x-1)$	pos.	neg.	pos.

Therefore, solution set for the inequality is $0 \le x \le \ln 6$ (exactly) or $0 \le x \le 1.79$ (approximately) Graph on GDC to confirm:

2. Given that $3x^2 - kx + 12$ is positive for all values of *x*, find the range of possible values for *k*.

Since the leading coefficient of this quadratic is positive (i.e. 3), then its corresponding equation in two variables, $y = 3x^2 - kx + 12$, is a parabola that opens up. If it is always positive, then it does not touch the *x*-axis – which also means that it has **no real zeros**. A quadratic equation will have no real zeros if the **discriminant is negative** (i.e. $b^2 - 4ac < 0$). Hence, find the values of *k* that satisfy the inequality $k^2 - 4(3)(12) < 0 \implies k^2 - 144 < 0$.

 $k^2 - 144 < 0 \implies (k+12)(k-12) < 0$ To solve inequality, only need to test three values for x ... one less than -12, one between -12 and 12, and one greater than 12.

This shows that the solution set for k is -12 < k < 12

-7

Review – Algebra and Functions & Equations (10 questions)

3. Find the value(s) of m so that the equation $mx^2 - mx + 1 = 0$ has exactly one real root.

The quadratic equation will have exactly one real root when the discriminant is zero.

$$m^2 - 4(m)(1) = m^2 - 4m = m(m-4) = 0 \implies \text{Either } m = 0 \text{ or } m = 4$$

But, if m = 0, then equation is 1 = 0 which is a false statement. Hence, only solution is m = 4

4. Find all real solutions for the equation $x = \sqrt{x+5} - 3$

$$x+3 = \sqrt{x+5}$$

(x+3)² = ($\sqrt{x+5}$)²
x²+6x+9 = x+5
x²+5x+4 = 0
(x+1)(x+4) = 0

Hence, x = -1 or x = -4

Whenever, squaring both sides in solving an equation one must check the solutions because extraneous solutions may have been introduced.

Check
$$x = -1$$
: $-1 = \sqrt{-1+5} - 3 \implies -1 = \sqrt{4} - 3 \implies -1 = 2 - 3$ OK
Check $x = -4$: $-4 = \sqrt{-4+5} - 3 \implies -4 = \sqrt{1} - 3 \implies -4 \neq 1 - 3$ Not OK

Therefore, only solution is x = -1

5. Solve the inequality $2|x+3| \le x+15$

6. Find the range of values of k for which y = 2x + k and $x^2 + y^2 = 4$ do no intersect.

Substitute 2x + k in for y in second equation $\Rightarrow x^2 + (2x + k)^2 = 4 \Rightarrow x^2 + 4x^2 + 4kx + k^2 - 4 = 0$ $5x^2 + 4kx + k^2 - 4 = 0$ If the two equations do not intersect, this equation has no solution. This is equivalent to the equation $y = 5x^2 + 4kx + k^2 - 4$ having no real zeros \Rightarrow discriminant is negative $(4k)^2 - 4(5)(k^2 - 4) < 0 \Rightarrow -4k^2 + 80 < 0 \Rightarrow k^2 - 20 > 0$ note: $\sqrt{20} = 2\sqrt{5}$ $(k + 2\sqrt{5})(k - 2\sqrt{5}) > 0$ check k less than $-2\sqrt{5}$, between $-2\sqrt{5}$ and $2\sqrt{5}$, and greater than $2\sqrt{5}$

This leads to the following solution set for k: $k < -2\sqrt{5}$ or $k > 2\sqrt{5}$ (exactly)

7. Find the exact solution(s) to the equation $8e^2 - 2e \ln x = (\ln x)^2$

 $(\ln x)^{2} + 2e \ln x - 8e^{2} = 0 \quad \text{Let } y = \ln x \implies y^{2} + 2ey - 8e^{2} = 0 \quad \text{quadratic formula gives } \dots$ $y = \frac{-2e \pm \sqrt{(2e)^{2} - 4(1)(-8e^{2})}}{2} = \frac{-2e \pm \sqrt{4e^{2} + 32e^{2}}}{2} = \frac{-2e \pm \sqrt{36e^{2}}}{2} = \frac{-2e \pm 6e}{2} \quad y = 2e \text{ or } y = -4e$ for $y = 2e \implies \ln x = 2e \implies x = e^{2e}$ for $y = -4e \implies \ln x = -4e \implies x = e^{-4e}$ exact solutions are $x = e^{2e}$ or $x = e^{-4e}$

confirm on calculator:

Plot1 Plot2 Plot3 \Y1=(ln(X))2+2e1 n(X)-8e2 \Y2=∎	Y1(e^(2e)) Y1(e^(-4e))	0 0
\Y3= \Y4= \Y5= \Y6=		

8. Find the quadratic equation having the roots 1+5i and 1-5i

If x=1+5i and x=1-5i are roots, then x-(1+5i) and x-(1-5i) are factors of the equation

$$[x - (1+5i)][x - (1-5i)] = [x - 1 - 5i][x - 1 + 5i] = [(x - 1) - 5i][(x - 1) + 5i] = (x - 1)^{2} - (5i)^{2} = x^{2} - 2x + 1 + 25 = x^{2} - 2x + 26$$
quadratic equation with roots $1 + 5i$ and $1 - 5i$ is $x^{2} - 2x + 26 = 0$

9. One root of the equation $x^2 + ax + b = 0$, where *a* and *b* are real constants, is 2+3i. Find the value of *a* and the value of *b*.

The other root must be the conjugate of 2+3i, which is 2-3i. If these are the roots, then the factors must be x-(2+3i) and x-(2-3i)

$$[x-(2+3i)][x-(2-3i)] = [(x-2)-3i][(x-2)+3i] = (x-2)^2 - (3i)^2 = x^2 - 4x + 4 + 9$$

The quadratic with these roots is $x^2 - 4x + 13 = 0$, therefore, a = -4 and b = 13

10. Find the square roots of 3+4i

Remember...every complex number will have two square roots

If
$$x + yi$$
 is the square root of $3 + 4i$, then $(x + yi)^2 = 3 + 4i$ Expand $(x + yi)^2$
 $x^2 + 2xyi + y^2i^2 = 3 + 4i$
 $x^2 - y^2 + 2xyi = 3 + 4i$

Now equating the real parts and the imaginary parts from both sides of the equation gives

$$x^{2} - y^{2} = 3$$
 and $2xy = 4$ It follows from the 2nd equation that $y = \frac{4}{2x} = \frac{2}{x}$
Substituting gives $x^{2} - \left(\frac{2}{x}\right)^{2} = 3 \implies x^{2} - \frac{4}{x^{2}} - 3 = 0$... multiplying both sides by x^{2}
 $x^{4} - 3x^{2} - 4 = 0 \implies (x^{2} - 4)(x^{2} + 1) = 0 \implies (x + 2)(x - 2)(x^{2} + 1) = 0$
Then $x = -2$ or $x = 2$
If $x = -2$, then $y = -1$... and if $x = 2$, then $y = 1$

Therefore, the two square roots of 3+4i are: -2-i and 2+i

confirm on GDC:

