Given that $0 \le \theta \le \frac{\pi}{2}$ and $\tan \theta = \frac{3}{4}$, find

(a)
$$\cos\theta = \frac{4}{5}$$

(b)
$$\sin 2\theta = 2 \sinh(\cos \theta = (2)(\frac{3}{5})(\frac{4}{5}) = \frac{24}{25}$$

(c)
$$\tan\left(\frac{\pi}{2} - \theta\right) = \tan\left(-\theta + \frac{\pi}{2}\right) = \tan\left(-\left(\theta - \frac{\pi}{2}\right)\right) = -\tan\left(\theta - \frac{\pi}{2}\right) = (\theta + \theta)$$

Question 2

Given that $0 < \theta \le \frac{\pi}{2}$, arrange, in increasing order, $\sin \theta$, $\frac{1}{\sin \theta}$, $\sin^2 \theta$.

$$Sin\theta$$
, $CSC\theta$, $(Sin\theta)^2 \Rightarrow (Sin\theta)^2$, $Sin\theta$, $Sin\theta$.

Question 3

(a) If
$$0 < \theta < 90^{\circ}$$
 and $\cos \theta = \frac{1}{3}a$, find $\sin \theta$.
(b) Express $\frac{\pi}{2}$ in degrees.

$$Sin = \frac{\sqrt{9-a^2}}{3}$$

(b) Express
$$\frac{\pi}{5}$$
 in degrees.

$$\frac{\pi}{5} = \frac{180}{5} = 36^{\circ}$$
(c) Evaluate $\cos 300^{\circ} \cos 30^{\circ}$

$$\frac{\pi}{5} = \frac{180}{5} = 36^{\circ}$$

(c) Evaluate
$$\cos 300^{\circ} \cos 30^{\circ}$$

 $(0.530)^{\circ} = \frac{1}{2}$ $(0.530)^{\circ}$

(d) Express in terms of
$$\tan \theta$$
, $\frac{1}{\cos(\frac{\pi}{2} + \theta)} \cdot \tan(\frac{3\pi}{2} - \theta)$.

= Sint . I = (-1)

Question 4

(a) Express
$$\frac{1}{\cos \theta - 1} - \frac{1}{\cos \theta + 1}$$
 in terms of $\sin \theta$.

(b) Solve
$$\frac{1}{\cos \theta - 1} - \frac{1}{\cos \theta + 1} = -8, 0^{\circ} < \theta < 360^{\circ}$$

$$\Re Sin(\pi-\theta)$$

$$= C (\Gamma L + \pi \Gamma)$$

$$= Sin \left(-\left[\frac{1}{2} + \pi\right]\right)$$

$$= -Sin \left(\frac{1}{2} + \pi\right) = Sin \left(\frac{1}{2}\right)$$

$$tm\left(-\frac{1}{2} + \frac{3\pi}{2}\right)$$

$$= ta\left[-\left(\frac{1}{2} - \frac{3\pi}{2}\right)\right]$$

=
$$-4\omega\left(\theta-\frac{3\pi}{3}\right)=600$$

#4.
$$\alpha$$
 $\frac{1}{(os\theta-1)}$ $\frac{1}{(os\theta+1)}$

$$= \frac{(los\theta + 1) - (los\theta - 1)}{(los\theta - 1)} = \frac{2}{-Sin^2\theta}$$

b.
$$-\frac{21}{\sin^2\theta} = -\frac{1}{4} = -\frac$$

$$#5 \cdot (los\theta - Sin\theta)^{2}$$

$$= (los\theta - Sin\theta)^{$$

(b)
$$\sin^2\theta - \sin\theta = 0$$

 $0 \le \theta \le 2\pi$ $\sinh \left(\sin \theta - 1 \right) = 0$
 $\sin \theta = 0$ $\sin \theta = 1$

$$\sqrt{1-0}$$
 $\sqrt{1-\frac{\pi}{2}}$

$$Sin^{2}\theta - Sin\theta = 2$$
.
 $Sin^{2}\theta - Sin\theta - 2 = 0$
 $Sin\theta = -2$
 $Sin\theta = 1$
 $Sin\theta = -1$
 $Sin\theta = -1$
 $Sin\theta = -1$

- (a) Given that $\cos\theta\sin\theta = \frac{1}{2}$, evaluate $(\cos\theta \sin\theta)^2$.
- (b) Find all values of θ such that
- (i) $\sin^2\theta \sin\theta = 0, 0 \le \theta \le 2\pi$.
- (ii) $\sin^2\theta \sin\theta = 2$, $0 \le \theta \le 2\pi$.

Question 6

The figure below shows the graph of $f(x) = 2\sin(\frac{x}{2})$.

Applitude: 2

Per: 0 d = 21 = 41

- (a) Find a, b and c. $A = \pi$, b = 2, $C = 4\pi$
- (b) Solve for x, where $f(x) = \sqrt{3}$, $0 \le x \le c$.

$$2 \left(\sin \left(\frac{x}{2} \right) = \sqrt{3} \right) + \left(\sin \left(\frac{\lambda}{2} \right) = \frac{\sqrt{3}}{2} \right) + \frac{\lambda}{2} = \frac{\pi}{3}, \quad \frac{2\pi}{3} = \frac{2\pi}{3}, \quad \frac{4\pi}{3}$$

Question 7

Consider the graph of the function $h(x) = a\cos(bx) + c$:

Find the values a, b and c.

$$A = \frac{mAV - min}{2} = \frac{5-2}{2} = \frac{3}{2}$$

$$C = \frac{mAX + min}{2} = \frac{5+2}{2} = \frac{1}{2}$$

$$b = \frac{2\pi}{period} = \frac{2\pi}{\pi} = 2.$$

a2+ 4a2 = 15.0

Question 11

For the diagram shown alongside, the value

of $\sin(\alpha - \beta) = \frac{1}{J_k}$, where $k \in \mathbb{Z}^{\frac{1}{n}}$.

Find the value of k.

Sin
$$(3-\beta) = Sin \cdot (0s \beta - (0s \beta - Sin \beta))$$

$$(\sqrt{b})^2 = 6^2 + 2^2 - (2)(6)(2)(\cos 6)$$

$$b = 36 + 4 - (2)(6)(2)(\cos 6)$$

$$= 40 - 3 = 37$$

Question 16

The area of the triangle shown is 27 sq. units. Given that $\sin \theta = \frac{3}{4}$, find x.

Aver =
$$(\frac{1}{4})(4x)(2x)$$
. Sinf
 $27 = 4x^2$. $\frac{3}{4}$
 $27 = 3x^2$
 $q = x^2$ =) $(x = 3)$ $(x > 0)$

The graph of $f(x) = a\cos(bx) + c$, $0 \le x \le \pi$ is shown below. Find the values a, b and c.

Question 21

The segments [CA] and [CB] are tangents to the circle at the points A and B respectively. If the circle has a radius of 4 cm and $\angle AOB = \frac{2\pi}{3}$.

$$b = \frac{2\pi}{3\pi} = \frac{2}{3}$$

- Find the length of [OC].
- Find the area of the shaded region.

Question 28 = 16/3 - 16TT

00 = 8 cm

+ 13 = 3 Area = (=) (+) (403) = 803

→ Aten = (2)(8/3) = 16/3 If $\sin A = \frac{\sqrt{2}}{4}$ and $\cos B = \frac{\sqrt{3}}{4}$ where both A and B are acute angles, find

(a) (i) $\sin 2A$

Area of (= () (4) 2 (2)

- (A) Sinzh = 2 SinA-cosA

$$(in) \cos 5B =$$

- $(C) \sin(A+B) = \sinh A \cdot (OSB + (OSA) \cdot SinB) = (2)(\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{4}) = (6)$ Question 30 $\frac{\sqrt{2}}{4} \cdot \frac{\sqrt{3}}{4} + \frac{2\sqrt{5}}{4} \cdot \frac{\sqrt{13}}{4} = (6)(\frac{\sqrt{2}}{4})(\frac{\sqrt{3}}{4}) = (6)(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4}) = (6)(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4}) = (6)(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4}) = (6)(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4})(\frac{\sqrt{2}}{4}) = (6)(\frac{\sqrt{2}}{4})($

 - Let $s = \sin \theta$. Show that the equation $15\sin \theta + \cos^2 \theta = 8 + \sin^2 \theta$ can be expressed in (a) the form $2s^2 - 15s + 7 = 0$.
 - Hence solve $15\sin\theta + \cos^2\theta = 8 + \sin^2\theta$ for $\theta \in [0, 2\pi]$.
 - (a) 15 Sinf+ (1-(in2f) = 8 + Sin2f ⇒ 25in²0 - 155in0+7=0 → 25²-155+7=0. Where 6=5in0
 - $(2S-1)(S-7)=0 = Sin \theta = \frac{1}{2} = 0$

The length, in minutes, of telephone calls at a small office was recorded over a one month period. The results are shown in the table below.

Length of call (minutes)	Number of calls	Cumlatine calls	mean:
0 < t ≤ 2	40	40	
2 < t ≤ 4	60) 100	100	[(1)(40) + (3)(60) +(5)(40)
4 < t ≤ 6	40	140	+(7)(30) + (9)(20)
6 < t ≤ 8	30 \ 90	סדו	+(1)(10)] = 200
8 < t ≤ 10	20	190	+(1)(10)) + 200
10 < t ≤ 12	10 🗸	200	→ ×××4.60
Total	200	209	A FIGURE
ulative frequency graph.		160	6 2 2.87

- (a) Construct a cumulative frequency graph.
- (b) Find (i) the mean length of calls. (i) 4.60
 - (ii) the mode of the length of calls.
 - (iii) the median.
- 3.00
- (ALL) 5.00

Question 7

A carton contains 12 eggs of which 3 are known to be bad. If 2 eggs are randomly selected, what is the probability that

$$\left(A\right)\left(\frac{3}{12}\right)\left(\frac{9}{11}\right)+\left(\frac{9}{12}\right)\left(\frac{3}{11}\right)=\left(2\right)\left(\frac{27}{132}\right)=\frac{27}{66}=\frac{9}{22}$$

(b) both are bad?

Question 15

$$\frac{\binom{5}{5}}{\binom{5}{10}} \left(\frac{\cancel{x}}{11}\right) = \frac{1}{22}$$

How many permutations are there of the word RETARD if

(b) they do not start with RE.
$$\Rightarrow$$
 6 / = 720

Students at Leegong Grammar School are enrolled in either physics or mathematics or both. The probability that a student is enrolled in physics given that they are enrolled in mathematics is $\frac{1}{3}$ while the probability that a student is enrolled in mathematics given that they are enrolled in physics is $\frac{1}{4}$. The probability that a student is enrolled in both mathematics and physics is:

$$\Rightarrow P(P|M) = \frac{1}{3} = \frac{P(P \land M)}{P(M)}$$

$$\Rightarrow P(M|P) = \frac{1}{4} = \frac{P(P \land M)}{P(P)}$$

- Find, in terms of x, the probability that x student is enrolled in
 - (i) mathematics.
 - (ii) physics.
- P(P) = (4X

- P(P/H) = X
- Find the probability that a student selected at rendom is enrolled in mathematics only. (b)
- If three such students are randomly selected what is the probability that at most one of them is enrolled is mathematics only?

Question 18

mems: one or none.

- $-\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)^{2}\cdot_{3}\left(1-\left(\frac{1}{2}\right)^{3}\right)$

(a) $\frac{1}{3} = \frac{x}{p(M)} / p(M) + p(p)$

 $\frac{1}{4} = \frac{\times}{P(P)} \left| \frac{-P(M \cap P)}{3x + (xx - x)} \right|$

- Find the probability of observing
 - exactly one tail.

A fair coin is tossed five times.

- (ii) at least four tails.
- 40RS
- (iii) at least one tail.

5,4,3,2,1-

Ouestion 24

If
$$P(A) = \frac{3}{4}$$
, $P(B) = \frac{1}{2}$ and $P(A \cup B) = \frac{7}{8}$. find

- $P(A \cap B)$. (a)
- $P(A' \cap B)$. (b)
- P(A'|B').

$$(i)$$
 $(\frac{1}{2})^{\frac{1}{5}} \cdot 5$

$$(ii)$$
 $\left(\frac{1}{2}\right)^5 s \left(4 + \left(\frac{1}{2}\right)^5 s \left(5\right)$

$$\left(\frac{1}{2}\right)^{5}$$

$$P(A \cup B) = \frac{7}{8} = P(A) + P(B) - P(A \cap B)$$

$$= \frac{3}{4} + \frac{1}{2} - \frac{3}{8}$$

(A)
$$P(ANB) = \frac{3}{8}$$

(b)
$$p(h' \wedge B) = \frac{1}{8}$$

(c)
$$P(P_i|P_i) = \frac{P(P_i|P_i)}{P(P_i)} = \frac{\frac{1}{8}}{\frac{4}{8}} = \frac{1}{4}$$