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CALCULUS REVIEW 
Differentiation 

Equation of Tangent/Normal Line 

The derivative of a function gives the slope of its tangent at a point 𝑥. In order to find the 

equation of the tangent line, you need a couple things: 

• The function itself 

• A point (𝑥, 𝑦) that lies on the function 

o Most scenarios will give you ‘when x = …’ 

o To solve this, find what the y value would be when plugging in 𝑓(𝑥) 

o Differentiate the function 

o Plug in the x and y values 

• A knowledge of differentiation techniques (chain rule, product rule, quotient rule) 

 

Once done, the equation of the tangent line can be set up like this: 

𝑦 = 𝑓′(𝑥)(𝑥 − 𝑥1) + 𝑦1 

Look familiar? It’s just point-slope form: 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) 

 

The normal line is a line that intersects perpendicularly with the tangent line of a function 

at a point 𝑥. To calculate the normal slope, just do 
−1

𝑓′(𝑥)
, then follow the same steps for the 

full line equation.  

Implicit Differentiation 

Implicit differentiation usually occurs when differentiating an equation results in multiple 

appearances of 
𝑑𝑦

𝑑𝑥
. To deal with this, separate the 

𝑑𝑦

𝑑𝑥
 onto one side of the equation and 

factor it out, then dividing the distributed equation.  

𝑑𝑦

𝑑𝑥
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 −

𝑑𝑦

𝑑𝑥
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑑𝑦

𝑑𝑥
(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) = 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

𝑑𝑦

𝑑𝑥
=

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 + 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
 

The goal of implicit differentiation is to get 
𝑑𝑦

𝑑𝑥
 by itself. 

Integration 

Integration seeks to find the area under a function. It is essentially ‘inverse differentiation’, 

as one can go from 𝑓′(𝑥) to 𝑓(𝑥). 

Standard Integrals 



∫𝑘𝑑𝑥 = 𝑘𝑥 + 𝑐 

∫𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝑐 

∫𝑒𝑘𝑥𝑑𝑥 =
𝑒𝑘𝑥

𝑘
+ 𝑐 

∫
1

𝑘𝑥
𝑑𝑥 =

log(𝑘𝑥) 

𝑘
+ 𝑐 

∫sin(𝑘𝑥) 𝑑𝑥 = −
cos(𝑘𝑥)

𝑘
+ 𝑐 

∫cos(𝑘𝑥) 𝑑𝑥 =
sin(𝑘𝑥)

𝑘
+ 𝑐 

∫sec2(𝑘𝑥) 𝑑𝑥 =
tan(𝑘𝑥)

𝑘
+ 𝑐 

∫sec(𝑘𝑥) tan(𝑘𝑥) 𝑑𝑥 =
sec(𝑘𝑥)

𝑘
+ 𝑐 

Integration by u-Substitution 

There are a couple critical steps to u-Substitution: 

1. Determine what value will become 𝑢 

2. Find the derivative of 𝑢, 𝑑𝑢. 

3. 𝑑𝑢 should almost always be a value present within the integration problem 

4. Replace values within the integration problem with 𝑢 and 𝑑𝑢. 

5. The equation should be essentially fully replaced 

6. Integrate with respect to standard integrals 

7. Replace 𝑢 with its corresponding value 

∫
𝑣𝑎𝑙𝑢𝑒1

𝑣𝑎𝑙𝑢𝑒2
 

𝑢 = 𝑣𝑎𝑙𝑢𝑒2, 𝑑𝑢 = 𝑣𝑎𝑙𝑢𝑒1 

∴ ∫
𝑑𝑢

𝑢
 

log(𝑢) + 𝑐 

log(𝑣𝑎𝑙𝑢𝑒2) + 𝑐 

Integration by Parts 

∫𝑢𝑣′ = 𝑢𝑣 − ∫𝑣𝑑𝑢 

Easier way to do this is with box method, where u and dv are given, then solve for du and 

v. The equation above can then be substituted with values found. 

Integration by Trig Identities 

Use the booklet for information regarding trig identities 



If a sin-cosine integration has an odd power ∫ sin3(𝑥) cos(𝑥) 𝑑𝑥, then u-substitution is 

possible 

Proving ∫ 𝐬𝐞𝐜(𝒙) 𝒅𝒙 

∫
sec(𝑥)

1
𝑑𝑥 

∫
sec(𝑥)

1
×

sec(𝑥) + tan(𝑥)

sec(𝑥) + tan(𝑥)
𝑑𝑥 

∫
sec2(𝑥) + sec(𝑥) tan(𝑥)

sec(𝑥) + tan(𝑥)
𝑑𝑥 

𝑢 = sec(𝑥) + tan(𝑥) , 𝑑𝑢 = sec(𝑥) tan(𝑥) + sec2(𝑥) 𝑑𝑥 

∫
1

𝑢
𝑑𝑢 = ln(𝑢) + 𝑐 

∴ ∫ sec(𝑥) 𝑑𝑥 = ln(sec(𝑥) + tan(𝑥)) + 𝑐 

Integration by Trig Substitution 

√𝑎2 − 𝑥2 = 𝑎 sin(𝜃) 

𝑥2 + 𝑎2 = 𝑎 tan(𝜃) 

√𝑥2 − 𝑎2 = 𝑎 sec(𝜃) 

Things to do before you start: 

1. Find 𝑥 

2. Find 𝑑𝑥 

3. Find original √𝑎2 − 𝑥2, 𝑥2 + 𝑎2, or √𝑥2 − 𝑎2 by itself with a trig identity 

4. Find a suitable equation for 𝜃 

Differential Equations 

Separable Differential Equations (General Solution and Particular Solution) 

Isolate 𝑑𝑦 and 𝑑𝑥 on their respective sides 

There are two ways to do this: 

• Division/multiplication 

• Distributive property, then divide/multiply 

Finding a general solution 

A general solution includes + 𝑐. Your + 𝑐 should usually be on the opposite side of the 

variable you are finding (finding 𝑦, 𝑦 = 𝑥 + 𝑐). 

Finding a particular solution 

A particular solution is when you’re looking for the answer to 𝐴 (which is usually 𝑒𝑐) or 𝑐. 

This can be solved by using the values provided in the question. 

Logistic Differential Equations and Newton’s Law of Cooling 



𝑑𝑦

𝑑𝑡
= 𝑘𝑦(1 −

𝑦

𝐿
) 

Linear Differential Equations 

𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 

𝐼(𝑥)𝑦 = ∫ 𝐼(𝑥)𝑄𝑑𝑥 

𝐼(𝑥) = 𝑒∫𝑃𝑑𝑥 

How to approach this problem: 

1. Set up the equation in the format 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 

2. Take 𝑝 and find the integral of it, then place that as an exponent of 𝑒 

3. Multiply that number on all sides 

4. Then put that resultant in an equation 
𝑑

𝑑𝑥
(resultant × 𝑦) 

5. Multiply 𝑑𝑥 to the other side and integrate that side 

6. Magic. (see review questions if you’re still confused) 

Homogeneous Differential Equations 

𝑑𝑦

𝑑𝑥
= 𝐹 (

𝑦

𝑥
) 

𝑦 = 𝑣𝑥, 𝑣 =
𝑦

𝑥
 

𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 

𝐹(𝑣) = 𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
 

Euler’s Method 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑥(𝑦′
𝑛
) 

I visualize it with 𝑦𝑛 = 𝑦𝑛−1 + ∆𝑥(𝑦′
𝑛−1

) as they’re the same thing. 

Slope Field 

Slope fields are just a way to visualize the slope at a given point with a given equation. To 

find it, just plug in the 𝑥 and 𝑦 values. You’ll probably have to do some work, as they’re 

usually separable differential equations. 

2nd Fundamental Theorem of Calculus 

𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

] = 𝑓(𝑥) 

  



CHAPTER 15: VECTOR 

APPLICATION 
Standards 

A vector is a line that cuts through a defined dimension. The dimensions we work with in 

this class are 2D and 3D. A 2D vector can be visualized as a line on an XY plane. Think of a 

2D vector like drawing a line on a piece of paper. It’s restricted to the dimensions of the 

paper, which is ‘two-dimensional’. A 3D vector can be visualized as a line on an XYZ plane. 

Think of a 3D vector like shooting an arrow, as it isn’t restricted to two dimensions; it exists 

in the three-dimensional world. 

Creating a Vector 

If we have a point 𝐴(𝑎, 𝑏, 𝑐) and 𝐵(𝑑, 𝑒, 𝑓) 

𝐴𝐵⃗⃗⃗⃗  ⃗ = (𝐵 − 𝐴) = (
𝑑 − 𝑎
𝑒 − 𝑏
𝑓 − 𝑐

) 

Component Form 

2D 

𝐴 = (
𝑎

𝑏
) 

 

3D 

𝐴 = (
𝑎
𝑏
𝑐
) 

Notice how each dimension has its own slot in the vector component form. 

Basis Form 

𝐴 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 

Operations 

Addition/Subtraction of Vectors 

(
𝑎
𝑏
𝑐
) − (

𝑑
𝑒
𝑓
) = (

𝑎 − 𝑑
𝑏 − 𝑒
𝑐 − 𝑓

) 

Multiplying/Dividing by a Number 

2(
𝑎
𝑏
𝑐
) = (

2 × 𝑎
2 × 𝑏
2 × 𝑐

) 



Length of a Vector (aka Magnitude) 

|𝐴 | = √(𝑎)2 + (𝑏)2 + (𝑐)2 

Unit Vector 

𝐴̂ =
𝐴 

|𝐴 |
 

Dot Product 

𝐴 ∙ 𝐵⃗  

(
𝑎
𝑏
𝑐
) ∙ (

𝑑
𝑒
𝑓
) = (

𝑎 × 𝑑
𝑏 × 𝑒
𝑐 × 𝑓

) 

Remember that when the dot product is equal to zero, the vectors are perpendicular 

𝑖𝑓 𝐴 ∙ 𝐵⃗ = 0, 𝐴 ⊥ 𝐵⃗  

Cross Product 

Creates a vector that is perpendicular to both vectors provided. 

 

Use the box method to calculate cross product 

𝐴 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 

𝐵⃗ = 𝑑𝑖 + 𝑒𝑗 + 𝑓𝑘 

𝑖 𝑗 𝑘
− − −
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

=

𝑖((𝑏 × 𝑓) + (𝑒 × 𝑐))

−𝑗((𝑎 × 𝑓) + (𝑑 × 𝑐))

𝑘((𝑎 × 𝑒) + (𝑑 × 𝑏))

 

Area 

1

2
|𝑢⃗ × 𝑣 | =

1

2
|𝑢⃗ ||𝑣 |sin (𝜃) 

Here is a good explanation if you don’t understand 

Lines/Planes in 3D 

When a directional vector, 𝑟 , has form 𝑟 = 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘 and cuts through point (𝑎, 𝑏, 𝑐),  

the following equations can be created. 

Vectors 

To determine a line you need: 

• Two points 

• A point and one directional vector 

Cartesian Equation 

𝑥 − 𝑎

𝑥1
=

𝑦 − 𝑏

𝑦1
=

𝑧 − 𝑐

𝑧1
 

https://math.stackexchange.com/a/1450695


Parametric Equation 

𝑥 = 𝑎 + 𝑥1𝑡 

𝑦 = 𝑏 + 𝑦1𝑡 

𝑧 = 𝑐 + 𝑧1𝑡 

 

Vector Equation 

𝑟 = (
𝑎
𝑏
𝑐
) + 𝜆 (

𝑥1

𝑦1

𝑧1

) 

Planes 

To determine a plane you need: 

• Three non-colinear points 

• One point and two nonparallel directional vectors 

• One point and a normal vector to the plane 

Cartesian Equation 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐷 

If you’re given: 

• A normal vector 

• A point 

Then switch the vector to the cartesian plane equation and plug in the point coordinates, 

giving you the 𝐷 value.  

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐴𝑥1 + 𝐵𝑦1 + 𝐶𝑧1 = 𝐷 

Vector Equation 

𝑟 = 𝑎 + 𝜆𝑏⃗ + 𝑡𝑐  

𝑛 ∙ 𝐴𝑅⃗⃗⃗⃗  ⃗ = 0 

𝑟 ∙ 𝑛 = 𝑎 ∙ 𝑛 

Normal Vector 

𝑛⃗ = 𝐴𝑖 + 𝐵𝑗 + 𝐶𝑘 

The normal vector has the same variables as the cartesian equation.  

Angles in between Lines/Planes 

Line and Line 

The angle that is calculated indicates the angle between the direction that both vectors 

point 

cos(𝜃) =
𝑎 ∙ 𝑏⃗ 

|𝑎 ||𝑏⃗ |
 

This is a simplified way to calculate the angle: 



𝜃 = cos−1 (
𝑎⃗ ∙𝑏⃗ 

|𝑎⃗ ||𝑏⃗ |
) 

Line and Plane 

Imagine a directional vector cutting through a piece of paper. 

That angle, 𝜙, can be seen on the visual on the right. 

Notice how 𝑛⃗ , the normal vector, points up while 𝑑 , the 

directional vector, cuts up and to the left. The angle formed 

becomes 𝜃.  

The red triangle formed requires 180°. Since it’s a right triangle, that means 𝜃 + 𝜙 = 90° 

There are two ways you can do this: 

1. The standard method of finding the angle between two vectors 

cos(𝜃) =
𝑎 ∙ 𝑏⃗ 

|𝑎 ||𝑏⃗ |
 

a. Once you do that, however, you need to subtract by 90. This is because we found 

𝜃, not 𝜙. 

2. The ‘shortcut’ method 

a. Replace cosine with sine, and solve 

sin(θ) =
𝑎 ∙ 𝑏⃗ 

|𝑎 ||𝑏⃗ |
 

Plane and Plane 

 

Steps: 

1. Take the normal vectors from both planes 

2. Find 𝜃, the angle between both vectors 

a. This is done with the standard method 

cos(𝜃) =
𝑎 ∙ 𝑏⃗ 

|𝑎 ||𝑏⃗ |
 

3. Subtract 𝜃 by 180° 

Shortest Distance between Lines/Planes/Points 



In order to find the shortest distance, a perpendicular vector must be created. The point 

where the perpendicular intersects with the original vector is called the foot. 

Line and Point 

You will need: 

• The parametric equation of a vector 𝑟  

• The coordinates of the point 𝑃 

Steps: 

1. Gather what’s needed first 

2. Create a vector 𝑃𝐹 from the point to the foot 

a. The component form should contain a variable 

b. This variable indicates a point on 𝑟  

c. Think of it as 𝑦 = 𝑥 + 5, where 𝑥 = 5 

3. Set the dot product between 𝑃𝐹⃗⃗⃗⃗  ⃗ and 𝑟  to be zero 

a. This means that the point selected on 𝑟  connects with 𝑃, making 𝑃𝐹⃗⃗⃗⃗  ⃗ a 

perpendicular vector to 𝑟  

4. Plug 𝑡 back into the parametric equations for the vector 𝑟  

5. This will give you the coordinates of the foot 𝐹, or the point where 𝑟  and 𝑃𝐹⃗⃗⃗⃗  ⃗ are 

perpendicular 

6. Now, you have the coordinates of 𝑃 and the coordinates of 𝐹 

7. We know the 2D distance formula to be √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. Therefore, the 3D 

distance formula will include the z axis 

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

Plane and Line 

You will need: 

• A plane 𝑃 and a line 𝐿⃗  that is parallel to the plane but not on the plane 

o You will most likely get the equation for the line in cartesian or polar 

 Acquire the point that lies on the plane as well 

• You will know if they are parallel if the normal vector, 𝑛⃗ , of the plane is 

perpendicular to the vector  

𝐿⃗ ∙ 𝑛⃗ = 0 

Steps: 

1. Create a new plane in which 𝐿⃗  lies on. 

a. This means using the Cartesian equation for 𝑃 but without the 𝐷 value 

2. Plug in the point value (that lies on the plane) into the Cartesian equation for your 

new plane, 𝑃2. 

3. You now have two planes! 

a. 𝑃, given 



b. 𝑃2, where 𝐿⃗  and the point that lies on 𝐿⃗  lie 

4. Refer to Plane and Plane to solve the distance. 

Plane and Plane 

You will need: 

• Two parallel planes 

o Prove this by comparing their normal vectors. If their normal vectors are 

parallel, then the planes are parallel 

• The Cartesian equations of both planes 

o This must include the 𝐷 value 

Steps: 

1. Understand the distance equation for planes 

𝑟 ∙ 𝑛⃗ = 𝐷 

a. The 𝐷 value is the same value as the one in the cartesian equation 

b. 𝑛⃗  is the normal vector in basis form 

c. Leave 𝑛⃗  as it is 

2. Convert 𝑛⃗  to a unit vector. This means dividing both sides by its magnitude 

𝑟 ∙

(
𝑎
𝑏
𝑐
)

√𝑎2 + 𝑏2 + 𝑐2
=

𝐷

√𝑎2 + 𝑏2 + 𝑐2
 

a. Apply this to the 𝐷 values on both planes 

3. Understand the continued distance equation 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐷1𝑎𝑛𝑑 𝐷2 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝐷1 − 𝐷2| 

Intersections of Lines/Skewed Lines 

Distinctions between Intersecting/Skew/Parallel Lines 

Here’s an easy way to visualize the differences between intersecting, skew, and parallel 

lines. 

• Intersecting and Parallel Lines are on the same plane. 

o Think of it as a piece of paper. 

o You can draw two parallel lines on a piece of paper – they will never 

intersect 

o You can also draw intersecting lines on a piece of paper – an X is a prime 

example of such. 

• Skew lines do not exist on the same plane.  

o Back to the paper. Think of one line cutting perpendicularly through the 

paper, while one point is drawn on the paper (it lies on the plane) 



o They may share intersections on two out of three dimensions (so if you 

view it from one angle it looks like they’re intersecting) but in reality they 

will never touch 

o Another way to visualize it is the faces of a cube. If you draw a line on one 

side of a cube and draw another one another side, they will never touch 

and are on different planes. 

Summarized Definitions: 

• Intersecting: on the same plane and meets at one point 

• Parallel: on the same plane and will never meet 

• Skew: on completely different planes and will never meet 

How to Classify Lines with Algebra 

You will need: 

• Two vectors 𝑙1 and 𝑙2 

Steps: 

1. Put both 𝑙1 and 𝑙2 into parametric form 

a. You will need to find the coordinates given for each vector 𝑙1 and 𝑙2  

b. You should have something along the lines of: 

𝑙1 →

𝑥 = 𝑎 + 𝑥1𝑡
𝑦 = 𝑏 + 𝑦1𝑡
𝑧 = 𝑐 + 𝑧1𝑡

, 𝑙2 →

𝑥 = 𝑑 + 𝑥2𝜆
𝑦 = 𝑒 + 𝑦2𝜆
𝑧 = 𝑓 + 𝑧2𝜆

 

2. Combine corresponding variables from each side 

𝑥 = 𝑎 + 𝑥1𝑡 = 𝑑 + 𝑥2𝜆 

𝑦 = 𝑎 + 𝑦1𝑡 = 𝑑 + 𝑦2𝜆 

𝑧 = 𝑎 + 𝑧1𝑡 = 𝑑 + 𝑧2𝜆 

3. Move variables to one side and the numbers to the other 

4. Choose two equalities and use system of equations to find one variable 

a. Find the other variable as well 

5. Now that you have the values of the two variables, plug them back into the original 

parametric equations from step 1 

6. Compare the values from each line 

7. Results 

a. Coincident: basis forms and coordinates are multiples of each other 

(

𝑥1

𝑦1

𝑧1

) = 𝑘(

𝑥2

𝑦2

𝑧2

)  𝑎𝑛𝑑 (

𝑎1

𝑏1

𝑐1
) = 𝑘 (

𝑎2

𝑏2

𝑐2

)  

 

b. Parallel: basis forms are multiples of each other, but coordinates are not 



(

𝑥1

𝑦1

𝑧1

) = 𝑘 (

𝑥2

𝑦2

𝑧2

) 

c. Skew: two values are equal but one is not 

d. Intersecting: all three values are equal 

Intersection of Planes 

Refer to Unique/Infinity/No Solutions for Three Planes. 

Row Operations 

Augmented Matrix 

[
𝑎 𝑐 | 𝑒
𝑏 𝑑 | 𝑓

] 

Row Reduction 

A method for solving systems of linear equations. This method uses augmented matrices. 

How to use Row Reduction 

Row reduction attempts to simplify a specific row by comparing that row with another row 

in the matrix. Think of it like doing system of equations without a matrix. 

4𝑥 + 4𝑦 = 8 

2𝑥 + 5𝑦 = 10 

Multiply the 2𝑥 + 5𝑦 = 10 by −2, then compare again 

−4𝑥 − 10𝑦 = −20 

4𝑥 + 4𝑦 = 8 

Then, add the two equations together 

(−4 + 4)𝑥 + (−10 + 4)𝑦 = −20 + 8 

0𝑥 − 6𝑦 = −12 

−6𝑦 = −12 

𝑦 = 2 

Now let’s visualize this in matrix form: 

[
4 4 | 8
2 5 | 10

] 

We’re going to combine −2 × 𝑟𝑜𝑤2 with row 1. If you code, you may see this as 𝑟𝑜𝑤2 =

(𝑅2 × −2) + 𝑅1. 

[
4 4 | 8

−4 −10 | −20
] 

[
4 4 | 8
0 −6 | −12

] 

Now we can simplify row 2 by dividing by −6 

[
4 4 | 8
0 1 | 2

] 



The second column represents the 𝑦 value, therefore 1𝑦 = 2. 

2D 

1. Get the lower left corner, 𝑏, to zero. 

[
𝑎 𝑐 | 𝑒
𝑏 𝑑 | 𝑓

] 

[
𝑎 𝑐 | 𝑒
0 𝑑 | 𝑓

] 

2. Simplify 𝑑 to 1. 

[
𝑎 𝑐 | 𝑒
0 1 | 𝑓

] 

3. Interact R1 and R2 to get 𝑐 to 0. 

a. The operation should look something like: 

𝑅1 = (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅1 − (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅2 

[
𝑎 0 | 𝑒
0 1 | 𝑓

] 

4. Simplify 𝑎 to 1. 

[
1 0 | 𝑒
0 1 | 𝑓

] 

3D 

1. Get the bottom left corner, 𝑐, to 0. 

a. This is usually by interacting R1 and R3. 

[

𝑎 𝑑 𝑔 | 𝑗
𝑏 𝑒 ℎ | 𝑘
𝑐 𝑓 𝑖 | 𝑙

] 

[

𝑎 𝑑 𝑔 | 𝑗
𝑏 𝑒 ℎ | 𝑘
0 𝑓 𝑖 | 𝑙

] 

2. Get the middle left, 𝑏, to 0. 

a. This is usually by interacting R1 and R2. 

[

𝑎 𝑑 𝑔 | 𝑗
𝑏 𝑒 ℎ | 𝑘
0 𝑓 𝑖 | 𝑙

] 

[

𝑎 𝑑 𝑔 | 𝑗
0 𝑒 ℎ | 𝑘
0 𝑓 𝑖 | 𝑙

] 

3. Get the middle bottom, 𝑓, to 0. 

a. This is usually by interacting R2 and R3. 

[

𝑎 𝑑 𝑔 | 𝑗
0 𝑒 ℎ | 𝑘
0 0 𝑖 | 𝑙

] 



4. Simplify 𝑖 to 1 

[

𝑎 𝑑 𝑔 | 𝑗
0 𝑒 ℎ | 𝑘
0 0 1 | 𝑙

] 

5. Interact R2 and R3 to get ℎ to 0.  

a. The operation should look something like:  

𝑅2 = (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅2 − (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅3 

[

𝑎 𝑑 𝑔 | 𝑗
0 𝑒 0 | 𝑘
0 0 1 | 𝑙

] 

6. Simplify 𝑒 to 1. 

[

𝑎 𝑑 𝑔 | 𝑗
0 1 0 | 𝑘
0 0 1 | 𝑙

] 

7. Interact R1 and R3 to get 𝑔 to 0. 

a. The operation should look something like: 

𝑅1 = (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅1 − (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅3 

[

𝑎 𝑑 0 | 𝑗
0 1 0 | 𝑘
0 0 1 | 𝑙

] 

8. Interact R1 and R2 to get 𝑑 to 0. 

a. The operation should look something like: 

𝑅1 = (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅1 − (𝑛𝑢𝑚𝑏𝑒𝑟)𝑅2 

[

𝑎 0 0 | 𝑗
0 1 0 | 𝑘
0 0 1 | 𝑙

] 

9. Simplify 𝑎 to 1. 

[

1 0 0 | 𝑗
0 1 0 | 𝑘
0 0 1 | 𝑙

] 

Unique/Infinity/No Solutions for Three Planes 

Standards 

When a matrix looks like this: 

[

1 𝑑 𝑔 | 𝑗
0 1 ℎ | 𝑘
0 0 𝑖 | 𝑙

] 

intersect. See the visual below: Then there are three possible scenarios: 

1. Infinite Solution: 𝑖 = 0, 𝑙 = 0  

a. This means that two of the planes are the same (coincident), and therefore 

the resultant two planes will make a line when they intersect.  



 
b. It could also mean that the planes all just make a line when they intersect 

 
2. Unique Solution: 𝑖 = 1, 𝑙 = 𝑠𝑜𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

a. This means that Plane 3 is unique and the three planes intersect/meet at a 

specific point in space. See the visual below: 

 
3. No Solution: 𝑖 = 0, 𝑙 = 𝑠𝑜𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

c. This means that there are multiple or no areas where the three planes 

intersect, Since 0 × 𝑖 = 𝑙 will never give a real value for either 𝑖 nor 𝑙. 

 
 

You can see more examples of triple plane interaction arrangements in the packet titled 

“2x2 Row Reduction” that was given on 12/9, or on page 467 in the IB Math HL textbook. 

  



CHAPTER 16: COMPLEX 

NUMBERS 
Standards 

Understanding Polar Coordinates 

Complex points contain a real number and an imaginary number. They lie on the Argand 

Plane. If this confuses you, refer to the following comparisons in the x-y plane: 

Normal Complex 

XY Plane Argand Plane 

X Axis Real Axis 

Y Axis Imaginary Axis 

X-axis reflection Conjugate 

Hypotenuse Modulus 

How much the hypotenuse has rotated Argument 

Argument/Modulus 

Refer to Polar/Cartesian/Euler Forms of Complex Numbers 

Polar/Cartesian/Euler Forms of Complex Numbers 

Cartesian Form 

• Complex Number: 𝑧 = 𝑎 + 𝑏𝑖 

o 𝑎 represents the displacement of the point on the real axis 

o 𝑏 represents the displacement of the point on the imaginary axis 

• The Conjugate of z: 𝑧∗ = 𝑎 − 𝑏𝑖 

o Think about it as reflecting across the x axis 

• Modulus: |𝑧| = √𝑎2 + 𝑏2 

o Think about it as the hypotenuse 

Polar Form 

• Complex Number: 𝑧 = 𝑟 cos(𝜃) + 𝑖𝑟 sin(𝜃) = 𝑟𝑐𝑖𝑠(𝜃) 

• Conjugate of z: 𝑧∗ = 𝑟 cos(−𝜃) + 𝑖𝑟 sin(−𝜃) = 𝑟𝑐𝑖𝑠(−𝜃) 

• Modulus: 𝑟 = |𝑧| = √𝑎2 + 𝑏2 

• Argument: 𝐴𝑟𝑔(𝑧) = 𝜃, 𝑤ℎ𝑒𝑟𝑒 − 𝜋 ≤ 𝜃 ≤ 𝜋 

o Argument describes the amount (in radians) the hypotenuse has rotated 

counterclockwise. 

Euler Form 

• Complex Number: 𝑟𝑐𝑖𝑠(𝜃) = 𝑟𝑒𝑖𝜃 



o If your 𝑒 doesn’t have an 𝑖, do not convert it into 𝑐𝑖𝑠 form 

Properties of 𝒛 = 𝒓𝒄𝒊𝒔(𝜽) 

𝑐𝑖𝑠(𝜃) × 𝑐𝑖𝑠(𝛽) = 𝑐𝑖𝑠(𝜃 + 𝛽) 

𝑐𝑖𝑠(𝜃)

𝑐𝑖𝑠(𝛽)
= 𝑐𝑖𝑠(𝜃 − 𝛽) 

𝑐𝑖𝑠(𝜃 + 2𝜋𝑘) = 𝑐𝑖𝑠(𝜃), 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ ℤ 

De Moivre’s Theorem 

[𝑟(cos(𝜃) + 𝑖 sin(𝜃))] = 𝑟𝑛(cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)) 

[𝑟𝑐𝑖𝑠(𝜃)] = 𝑟𝑛(𝑐𝑖𝑠(𝑛𝜃)) 

You will not need to prove De Moivre’s theorem by math induction on the final 

Roots of Complex Numbers 

(𝑎 + 𝑏𝑖)
1
𝑛 = [𝑟(cos(𝜃) + 𝑖 sin(𝜃))]

1
𝑛 = 𝑟

1
𝑛 [cos (

𝜃 + 2𝑘𝜋

𝑛
) + 𝑖 sin (

𝜃 + 2𝑘𝜋

𝑛
)] ,

𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, 1, 2,… , 𝑛 − 1 

If you’re given an equation 𝑧𝑛 − 𝑎 = 0: 

1. Move a to the other side 

𝑧𝑛 = 𝑎 

2. Root the equality by 𝑛 

𝑧 = 𝑎
1
𝑛 

3. Convert 𝑎 to 𝑎𝑐𝑖𝑠(0) 

a. This is because 𝑐𝑖𝑠(0) = 1 

b. 𝑎 = 𝑎 × 1 = 𝑎 × 𝑐𝑖𝑠(0) 

𝑧 = (𝑎𝑐𝑖𝑠(0 + 2𝜋𝑘))
1
𝑛 

4. Continue with De Moivre’s Theorem 

  



MATH INDUCTION 
Standards 

You will need: 

• An equation 𝑃(𝑛) or a conjecture to prove 

Steps to perform induction (with correct notation): 

1. Show that the statement is true for an initial case, 𝑛 = 1 

2. Assume that the statement is true for 𝑛 = 𝑘 where 𝑘 ∈ 𝑍+ 

3. Prove that the statement is true for 𝑛 = 𝑘 + 1 

4. ∴ the statement is true for 𝑛 ∈ 𝑍+ 

Series 

1. When 𝒏 = 𝟏… 

a. Solve the left hand side for when 𝑛 = 1 

b. Solve the right hand side for when 𝑛 = 1 

c. Compare 

d. ∴ 𝑷(𝒏) is true for 𝒏 = 𝟏 

2. When 𝒏 = 𝒌 where 𝒌 = 𝒁+… 

a. Replace the n values with k 

b. Assume [insert 𝑷(𝒌) fully written out] is true  

3. If 𝒏 = 𝒌 + 𝟏… 

a. Write down what you’re looking for 

i. This is usually the right hand side 

ii. Replace the 𝑛 with 𝑘 + 1 

b. 𝑷(𝒏 + 𝟏) = 𝑷(𝒏) + 𝑳𝑯𝑺(𝒌 + 𝟏) 

i. Assuming that 𝑃(𝑛) is a series, the next value will always contain 

what’s stated in the LHS 

1. Example: when we did ∑ 𝑖𝑘
𝑖=1 =

𝑛(𝑛+1)

2
, ∑ 𝑖𝑘+1

𝑖=1  can be split into 

∑ 𝑖𝑘
𝑖=1 + (𝑘 + 1) 

c. Simplify the expression in the effort to reach what you wrote down at 

the beginning of step 3 

4. ∴ 𝑷(𝒏): [write out whole statement] is true for all [limitations] 

Trigonometry 

Trigonometry Induction is nearly identical to Series Induction. The only difference is that 

you may need to apply the following identity for difference as a product: 

sin(𝛼) − sin(𝛽) = 2 cos (
𝛼 + 𝛽

2
) sin (

𝛼 − 𝛽

2
) 



Try to think of this identity with 𝛼 and 𝛽 rather than 𝑥 and 𝑦, since you’re usually given 𝑥 

variables in your problem, which are not the same as 𝛼 and 𝛽. 

 

The main difference of Trigonometric Induction is the third step. 

1. Same 

2. Same 

3. If 𝒏 = 𝒌 + 𝟏… 

a. Try your best to place the equation into the form containing 

𝟐 𝐜𝐨𝐬(𝒗𝒂𝒍𝒖𝒆𝟏) 𝐬𝐢𝐧(𝒗𝒂𝒍𝒖𝒆𝟐). 

b. Then, understand the following relations 

i. 𝑣𝑎𝑙𝑢𝑒1 =
𝛼+𝛽

2
 

ii. 𝑣𝑎𝑙𝑢𝑒2 =
𝛼−𝛽

2
 

c. Use these relations to solve for 𝛼 and 𝛽 

d. Simplify 

4. Same 

Divisibility 

Step 2 and Step 3 are different in Divisibility induction 

1. Same 

2. When 𝒏 = 𝒌 where 𝒌 = 𝒁+… 

a. Take the divisibility number (example: divisible by 3) and create a variable 𝐴 

that contains the divisibility number (example: 3𝐴) 

i. This means that when you want to find 𝐴 by itself, you divide 𝑃(𝑛) by 

3 and thus A is possible to be found. 

ii. This means that 𝑃(𝑛) is divisible by 3! 

b. Assume that 𝑷(𝒏) is divisible by 3 

c. [write 𝑷(𝒏) out] = 𝒏𝑨 

i. 𝑛 is the divisibility amount that was mentioned before 

3. If 𝒏 = 𝒌 + 𝟏… 

a. Replace the 𝑛 with 𝑘 + 1 

b. Simplify through substitution (examples included) 

i. 𝑘3 + 2𝑘 = 3𝐴 

1. (𝑘 + 1)3 = 2(𝑘 + 1) 

2. 𝑘3 + 3𝑘2 + 3𝑘 + 1 + 2𝑘 + 2 

3. 𝑘3 + 2𝑘 + 3𝑘2 + 3𝑘 + 3 

a. Remember that 𝑘3 + 2𝑘 = 3𝐴 

4. 3𝐴 + 3𝑘2 + 3𝑘 + 3 

a. Simplify 

5. 3(𝐴 + 𝑘2 + 3𝑘 + 3) 



ii. 5𝑘 − 1 = 4𝐴 

1. 5𝑘+1 − 1 

2. 5 ∙ 5𝑘 − 1 

a. Remember that 5𝑘 − 1 = 4𝐴, therefore 5𝑘 = 4𝐴 + 1 

3. 5(4𝐴 + 1) − 1 

4. 20𝐴 + 5 − 1 

5. 20𝐴 + 4 

6. 4(5𝐴 + 1) 

4. Same  

Calculus 

The Calculus Induction problems we have been given involve differentiation (taking the 

derivative). 

 

This means that the function is usually 𝑓𝑛(𝑥) = 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔.  

This is not an exponent. It is the amount of times you need to take the derivative.  

 

The only different step is the third one. 

1. Same 

2. Same 

3. If 𝒏 = 𝒌 + 𝟏… 

a. When you see 𝑓𝑘+1(𝑥), do not change the variable on the RHS to 𝑘 + 1. 

b. This is because you are taking the derivative. 

i. You should still write down what you’re looking for, which does 

contain a replacement of the RHS to 𝑘 + 1. 

c. Therefore, the next step would be to take the derivative 

d. Simplify and compare  

4. Same 

Complex Numbers 

Refer to the packet titled “Complex Numbers” that was given on 12/6. 

Inequality 

NO (its not on the final lol) 
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