IB Math 3: Alternating Series 

(Objective:  Determining an absolute or a conditional convergence of an alternating series)
Warm up

To prove the series' convergence, determine which test (Divergence test ,  Integral test,  Direct comparison, Limit comparison, or Ratio test)  you need to apply for the following series. Do not perform the test.  
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[image: image1.wmf]å

¥

=

1

k

k

e

k

:  ​​​​​​​​​​​___________________   
   
 2.  
[image: image2.wmf]å

¥

=

÷

ø

ö

ç

è

æ

+

1

9

3

1

k

k

:  _____________________   
 3.  
[image: image3.wmf]å

¥

=

-

1

)

5

/

6

(

k

k

:  ________________ 

 4.  
[image: image4.wmf](

)

2

1

!

(3)!

k

k

k

¥

=

æö

ç÷

ç÷

èø

å

:  _______________________
Part I:  Alternating Series
When a series contains both positive and negative term alternating in sign, it is called alternating series.  For example,  
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 is an alternating series.   To test if the alternating series' convergence, the alternating series test is used.  The following is the ALTERNATING SERIES TEST THEOREM.
Let 
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Converge if the following two conditions are met.
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Example 1)  Test the series 
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 for convergence.

Solution:

Practice on white board)  Test the series 
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 for convergence.

Part II:  Absolute Convergence and Conditional Convergence for Alternating Series
Alternating series is classified differently as follows:
1.  Alternating Series, 
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, is absolutely convergent if 
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converges. 

2.  Alternating Series, 
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, is conditionally convergent if 
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converses but 
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diverges. 

	

	Example 2 )  Determine whether the series ,
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,  is conditionally convergent or absolutely convergent.


	


Practice on the white board:  Determine whether the series 
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 is conditionally convergent or absolutely convergent
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