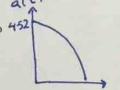

Part 1: Tangent Lines.

Goal: Approximate the slope of a tangent line using a graph.

Use a straight edge to draw the line tangent to the each function at x = 1. Use your line to estimate the slope of the function at x = 1.



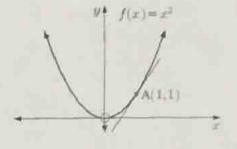
Part 2: Instantaneous speed.

Goal: Find the instantaneous speed of a falling object.

In a BASE jumping competition form the Petronas Towers in Kuala Lumpur, the altitude of a professional jumper in the first 3 seconds is given by $a(t) = 452 - 4.8t^2$ meters, where $0 \le t \le 3$ seconds.

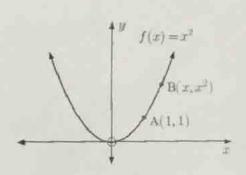
1. What will the graph of the altitude of the jumper in the first 3 seconds look like? 452

2. Does the jumper travel with constant speed No


3. Complete the table.

J. Compi		1 2	1/of or arts
Time c	Change in time from t = c to t = 2 seconds	Change in altitude from t = c to t = 2 seconds	Average speed from t = c to t = 2 seconds
1	1 Sec	432.8 - 447.2 = -14.41	-14.4 = -14.4 m/sec
1.5	.5	432.8-441.2=-8.4	-8.4m = - 16.8 m/sec
1.8	. 2.	432.8 - 436.4 = -3.6	-3.6 m = -18 m/sec
1.9	.1	432,8-434.7 = -1.87	-1.87m = -18.7 m/sec
1.99	.01	432.8-432.9915 = 19152	19152 = -19.152 m/sec
1.999	.001	432.8-432.819 =	0191952 001 = - 19.1952 m/s

4. What do you suspect is the speed of the jumper at t = 2 seconds?


Part 3: The slope of a tangent. Goal: Determine the slope of a tangent line.

Given a curve f(x), we wish to find the slope (gradient) of the tangent at the point (a, f(a)). For example, the point A(1,1) lies on the curve $f(x) = x^2$. By the end of this investigation, we will know the slope of the tangent at A.

- 1. Suppose B lies on $f(x) = x^2$ and B has coordinates (x, x^2) .
 - Show that the chord \overline{AB} has slope $\frac{f(x)-f(1)}{x-1}$ or $\frac{x^2-1}{x-1}$.

$$m = \frac{Y_2 - Y_1}{X_2 - X_1} = \frac{X^2 - 1}{X - 1}$$

b. Complete the table

X	Point	Slope of \overline{AB}
5	(5, 25)	6
3	(3.9)	4
2	(2,4)	3
1.5	(15, 2.25)	2.5
1.1	(1.1, 1.21)	2.1
1.01	(1.01, 1.000)	2.01
1.001	(1.001, LOD	2001) 2.001

$$\frac{25-1}{5-1} = \frac{24}{4} = 6$$

$$\frac{9-1}{3-1} = \frac{8}{2} = 4$$

c. Comment on the slope of \overline{AB} as x gets closer to 1.

- 2. What do you suspect is the slope of the tangent at A?
- Challenge: Write a mathematical expression that represents the process we completed in problem 1. Evaluate your expression and compare your answer with #3.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$

$$\lim_{x \to 1} (x + 1)$$

$$1 + 1$$

$$2$$