## IB Math HL 1

Introduction to Limits

- 1. Warm up:
- On your GFC, plot the graph of  $f(x) = \frac{x^2 1}{x 1}$ Sketch the result.



Complete the table. b.

| x    | 0.8 | 0.9  | 0.99 | 0.999 | 1     | 1.001 | 1.01 | 1.1 | 1.2  |
|------|-----|------|------|-------|-------|-------|------|-----|------|
| f(x) | 1.8 | 1. 9 | 1.99 | 1.999 | undef | 2.001 | 2.01 | 2.1 | 2. 2 |

Connecting with previous knowledge: When you substitute x = 1, what form does the answer take? What name is given to an expression of this form?

 $f(1) = \frac{1^2 1}{1 - 1} = \frac{0}{0} = \text{undef.}$ Connecting with new concept: The graph of f has a hole / chis continuous 1. The f value at this discontinuity is the **limit** of f(x) as x approaches 1. So in calculus, you will be asked "What is the limit of f(x) as x approaches 1?"

Calculus notation is  $\lim_{x\to 1} f(x) = 2$ : The limit of f(x) as x approaches 1 is 2.

## Informal Definition of Limit #1:

What y-value does f(x) get close to as x approaches c?

Close: as close as you need to be convinced of the result

Approaches: closer and closer but not actually there\*





Use the graph to determine the indicated limit.

a.





c.



$$\lim_{x \to 1} g(x) = 3$$

$$\lim_{x \to -1} h(x) = 2 \Re 3$$

$$\lim_{x\to 0} k(x) = D N = .$$

d.





$$\lim_{x\to 3} p(x) = \infty \quad 0 R - \infty$$

3. Use the table values to determine the limit.

a. 
$$\lim_{x \to 2} \frac{x^2 + x - 2}{x + 2} =$$

| x    | 1.997  | 1.998 | 1.999 | 2 | 2.001 | 2.002 | 2.003 |
|------|--------|-------|-------|---|-------|-------|-------|
| f(x) | 0. 997 | 0.998 | 0,999 | 1 | 1.001 | 1,002 | 1.003 |

b. 
$$\lim_{x\to 2} \frac{\sqrt{x+2}-2}{x-2} = 0.25$$

| x    | 1.997   | 1.998   | 1.999   | 2      | 2.001   | 2.002  | 2.003 |     |
|------|---------|---------|---------|--------|---------|--------|-------|-----|
| f(x) | 0,25004 | 0.25003 | 0.25001 | undef. | 0.24998 | 6.2499 | 0.24  | 995 |

c. 
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4} = 0.25$$

| between | 0.25001 | and | 0.24998 |
|---------|---------|-----|---------|
|         |         |     |         |

| f(x) | . 25004 | ٠٤٥٥٥3 | 0.25001 | undef | 0.24998 | 0.24996 | 0.2499 |
|------|---------|--------|---------|-------|---------|---------|--------|
| x    | 3.997   | 3.998  | 3.999   | 4     | 4.001   | 4.002   | 4.003  |

Between 0.25001 and 0.24998

$$d. \lim_{x\to 0} \frac{\sin x}{x} = \underline{\hspace{1cm}}$$

| f(x)        | 0.98 506 | 0,99334 | 0.99833 | undef. | 0.99833 | 0.99339 | 0.985 |
|-------------|----------|---------|---------|--------|---------|---------|-------|
| x (radians) | 3        | 2       | 1       | 0      | 1       | .2      | .3    |

Between 0,99833 and 0,99833.

