IB Math 2: introduction to Optimization Problem Solving Name:

Strategy:

1. Draw a diagram of given situation with appropriate notation.
2. Construct a formula with the variable to be optimized as the subject.
{(Remember to write in one variable using the given restriction)
3. Find the first derivative and solve for x which make the first derivative zero.
4. Confirm if the solution is maximum or minimum and revisit if the solution is reasonable.

1) A rectangular cake dish is make by cutting out squares from the corners of a 25 cm by 40 cm rectangle of tin-
plate, and then folding the metal to form the container. What size square must be out t to product the cake dish
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You need to fence a rectangular play zone for children. What i@mﬁor the play zone§§t§5 to fitinto
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4) A swimmer is at point 500 m from the closest point on a straight shoreline. She needs to reach a cottage
located 1800 m down shore from the closest point. If she swims at 4 m/s and she walks at 6 m/s, how far from
the cottage should she come ashore so as to arrive at the cottage in the shortest time?






