Solubians Name:

A tank initially contains 10 kg of dissolved salt in 300 litres of water. The a. solution runs out at the rate of 3 litres/min. Fresh water is added into the tank at the same rate.

Let x kg of salt be present in the tank at any time t minutes.

- i. Find the concentration of salt in the tank at any time t minutes.
- Find the rate, in kg/min, at which salt runs out of the tank. ii.
- Set up the differential equation for the amount of salt in the tank at îii. any time t minutes.
- Solve this d.e. and find how long it takes for the concentration of salt iv. in the tank to reach 40% of its initial concentration.
- b. A salt solution of 0.2 kg/litre is now entering the tank and the solution runs in and out at the same rate as before.
 - i. Set up the differential equation for this situation.
 - Assuming the same initial conditions as in part a., how much salt ii. will there be in the tank after 2 hours?
- Assume that for the situation described in part b., the rate at which the C, salt/water solution runs in is 2 litres/min but still runs out at 3 litres/min.

a. (i)
$$\left(\frac{x}{300} \frac{xg}{2}\right)$$
 (ii) $\left(\frac{3k}{min}\right)\left(\frac{x}{300} \frac{xg}{2}\right) = \left(\frac{x}{100}\right)\frac{xg}{min}$.

(iii) $\frac{dk}{dt} = -\frac{x}{100} \frac{kg}{min}$ (iv) $\frac{dx}{x} = \left(\frac{-1}{100}\right)dt \Rightarrow \ln x = \frac{-1}{100}t + C$

$$\left(\frac{x}{x}\right) = \frac{1}{100} \frac{x}{min}$$

are attached

$$\left(\frac{3L}{min}\right)\left(\begin{array}{c}0.2-1/2\\0.6\end{array}\right)=\left(\begin{array}{c}0.6\\\frac{k_2}{min}\right)$$

amount sald flow out

(i)
$$\frac{\partial x}{\partial t} = 0.6 - \frac{x}{100} \left(\frac{x}{x} \right) = \frac{x}{100} \frac{x}{min}$$

$$\Rightarrow \frac{dx}{dt} = \frac{60 - x}{100}$$

$$(ii) \Rightarrow \frac{dx}{60-x} = \frac{dt}{100} \Rightarrow -l_{1}|60-x| = \frac{t}{100} + 1 \qquad x=10 \ t=$$

$$\Rightarrow \frac{t}{100} = \ln\left(\frac{50}{60-x}\right) \Rightarrow \chi = 60 - 50e^{\frac{t}{100}t}$$

$$\Rightarrow \frac{50}{10-x} = e^{\frac{t}{100}} \Rightarrow 50 = e^{\frac{t}{100}}(60-x)$$

(c) The Rate of amount salt flow in
$$\left(2\frac{l}{min}\right)\left(0.2\frac{tg}{l}\right) = 0.4\frac{tg}{l}$$

The Rate of amount Salt flow out

$$\left(3\frac{1}{min}\right)\left(\frac{x}{300+(3-2)t}\right) = \frac{3x}{300+t}$$

$$\Rightarrow \left[\frac{dx}{dt} = 0.4 - \frac{3x}{300+t} \left(\chi(0) = 10\right)\right]$$