The Logistic Equation

Logistic Equation Key

The exponential growth model was derived from the fact that the rate of change of a variable y is proportional to the value of y. You

observed that the differential equation $\frac{dy}{dt} = ky$ has the general solution $y = Ae^{kt}$. The exponential growth is unlimited, but when

describing a population, there often exits some upper limit L past which growth cannot occur. The upper limit L is called the carrying capacity, which is the maximum population y(t) that can be sustained or supported as time t increases. A model that is often used to describe this type of growth is the logistic differential equation ("Calculus by Larson")

$$\frac{dy}{dt} = ky \left(1 - \frac{y}{L} \right)$$

Let's Solve the differential equation $\frac{dy}{dt} = ky \left(1 - \frac{y}{L}\right)$

$$\frac{dx}{dt} = k \cdot y \left(1 - \frac{z}{z}\right)$$

$$= k \cdot g \left(\frac{z}{z} - \frac{z}{z}\right)$$

$$= \frac{k}{z} \cdot y \left(1 - \frac{z}{z}\right)$$

y = L

Logistic curve

Note that as
$$t \to \infty$$
, $y \to L$.

Figure 6.17

$$\Rightarrow \frac{g(L-g)}{g(L-g)} = \frac{L}{k} \cdot dt.$$

$$\Rightarrow \frac{1}{\mu} \int \left(\frac{1}{y} + \frac{1}{2-g} \right) dy = \int_{\mathcal{L}}^{\mu} dt$$

$$A = \frac{1}{2} \qquad B = \frac{1}{2}.$$

$$y(2-y) = \frac{1}{2}(2-y) + \frac{1}{2}y$$

$$= \int_{h} \left(\frac{L-g}{g} \right) = -kt - c$$

Example Practice) A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104. The commission believes that the environment can support no more than 4000 elk. The growth rate of the elk population p is $\frac{dp}{dt} = kp \left(1 - \frac{p}{4000}\right)$,

 $40 \le p \le 4000$, where to is the number of years.

- a. Solve the differential Equation to model for the elk population in terms of t.
- b. Use the points (0, 40) and (5, 104) to verify that this is a reasonable slope field for the differential equation.
- c. Use the model to estimate the elk population after 15 years.
- d. Find the limit of the model as $t \to \infty$.

a.
$$\frac{dP}{dt} = kP \cdot \left(1 - \frac{P}{4000}\right)$$

$$\frac{dP}{dt} = \frac{k}{4000} \cdot P\left(4000 - P\right)$$

$$\frac{dP}{P(4000 - P)} = \frac{k}{4000} dt$$

$$\frac{df}{dx} = (-194)(40)(1-\frac{1}{400})$$

$$\frac{df}{dt} = \frac{1}{(194)(h/(1-104))} = \frac{1}{p(4000-p)} = \frac{1}{p} + \frac{1}{4000-p}$$

$$= \frac{1}{2} \frac{1}{19.65} \cdot A = \frac{1}{4000} \cdot B = \frac{1}{4000}$$

$$t=0$$
 $p=40$

$$40 = \frac{4000}{1+A}$$
 $A=99$

$$k=5$$
 $p=104$
 $104=\frac{4000}{1+99.6-k(5)}$

K20.194