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The average depth of the water at a particular point on the beach varies sinusoidally with time due to the motion
of the tides. The figure shows the depth, y, measured in feet, at such a point as a function of X, measured in
hours after midnight at the beginning of January 1. The particular equation of the sinusoid 1s
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1.  Whatis the deepégt the water gets? What is the first time on January 1 at which the water is this deep?

What is the pe;:/xod of this function?
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2. Where the graph dips below the x-axis, the water is completely gone, leaving the pint on the beach out
of thc water, Af what tipie does the lowest tide first occur on January 1? How deep a hole would you

havq to dig in the sand,éfo that water would flow into it at that flme;?f} g = -
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3. Caleulate the depth of the water at 4:00 pmon J anuary ﬁhg fﬁﬁgiﬁ'le answer agrees with the grdph'7
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4. Find%thc graphically the first interval of times on January 1 for which the water is completely gone.
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