IB Math HL 1 Power Rule WS

Name: Period:

Work with your group.

Part I: Finding a pattern in the Derivatives of polynomials.

1. Use the definition of derivative, find the derivatives, f'(x), of the following polynomials.

f(x)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f'(x)

$$f(x) = x$$
 Work:

f'(x) =

$$f(x) = x^2$$
 Work:

 $f'(x) = 2\chi$

$$f(x) = x^3$$
 Work: $\lim_{h \to 0} \frac{(\chi + h)^3 - \chi^3}{h}$

f'(x) = 3x

$$= \lim_{h \to 0} \frac{\chi^{3} + 3\chi^{2}h + 3\chi h^{2} + h^{3} - \chi^{3}}{h}$$

$$= \lim_{h \to 0} \frac{h \left[3\chi^{2} + 3\chi h + h^{2} \right]}{h} = \frac{3\chi^{2}}{h}$$

$$f(x) = x^{4}$$
Without working through the definition, predict the derivative of $f(x) = x^{4}$.

$$f(x) = x^4$$
 Without working through the definition, predict the derivative of $f(x) = x^4$.

$$f(x) = x^n$$
 Observing the patterns of above, make a conjecture of the derivative of $f(x) = x^n$. (Conjecture: unproven mathematical theorem based on patterns)

$$f(x) = 5$$
 Now using the above conjecture, predict the derivative of $f(x) = 5$.

f'(x) =

2. Conclusion: The conjecture you made for derivative of $f(x) = x^n$ is called the **Power rule**. Explain the power rule.

 $\frac{\partial f}{\partial x} = f(x) = \eta \chi^{n-1}$

Part II: Prove of the power rule of Derivative of a polynomial.

1. Using the binomial expansion theorem, expand
$$f(x) = (x+h)^n$$
.

Work:
$$f(x) = \chi^n + \left(\frac{n!}{2!(n-1)!}\right) \chi^{n-1}h + \left(\frac{n!}{2!(n-2)!}\right) \chi^{n-2}h^2 \dots h^n$$

2. Evaluate $f'(x) = \lim_{h \to 0} \frac{(x+h)^n - \chi^n}{h} = (n-1)x^n$.

Work:
$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \left[\chi^n + \eta \chi^{n-1}h + \frac{\eta (\eta - 1)}{2}\chi^{n-2}h - \frac{\eta (\eta - 1$$

Part III: Additional Rules: Multiplication by a Scalar:

Work:

If
$$f(x) = a \cdot g(x)$$
, then $f'(x) = ag'(x)$

Addition and Subtraction:

If
$$h(x) = f(x) \pm g(x)$$
, then $h'(x) = f'(x) \pm g'(x)$

Part VI: Finding the derivatives using the power rule and Additional rules.

Use the rules you have learned in this activity to find $y'(\frac{dy}{dx})$. You may need to rewrite some expressions in the form of x^n .

1.
$$y = 3x^{4} - 7x + 1$$

2. $y = 8x^{9} + 4x^{5} - 3x^{2} + 2$

3. $y = \frac{1}{x^{4}} = \chi^{-4}$

$$| \frac{1}{x^{4}} | = y' = (-4)\chi^{-5}$$

$$= (-4)\chi$$