CALCULATOR is Okay! Show all work. Box your final answer.

1. Given the x-axis, $f(x) = \cos 2x$ and $g(x) = \sin 2x$.

a) Sketch the graphs in $x \in [0, \pi]$. [2]

a) Algebraically find the first two intersections of x values in $[0,\pi]$. Show your work and give your answer in exact. [2]

$$2X = \frac{\pi}{4}, \frac{5\pi}{4} \Rightarrow X = \frac{\pi}{8}, \frac{5\pi}{8}.$$

c) Find the area between the curves. Show your work in two integrals and give your answer in 3 significant figures. [3]

$$A = \int_{0}^{\frac{\pi}{8}} \left(|\cos 2x - \sin 2x| \right) dy + \int_{\frac{\pi}{8}}^{\frac{\pi}{8}} \left(|\sin 2x - (\cos 2x)| \right) dy$$

$$= \left[\frac{1}{2} (\sin 2x + \frac{1}{2} (\cos 2x) \right]_{X=0}^{X=\frac{\pi}{8}} + \left[-\frac{1}{2} (\cos 2x - \frac{1}{2} \sin 2x) \right]_{X=\frac{\pi}{8}}^{X=\frac{\pi}{8}}$$

$$= \frac{1}{2} \left[|\sin \frac{\pi}{4} + (\cos \frac{\pi}{4})| - \frac{1}{2} \left[|\cos 0| \right] - \frac{1}{2} \left[|\cos \frac{5\pi}{4} + \sin \frac{5\pi}{4}| + \frac{1}{2} \left[|\cos \frac{\pi}{4} + \sin \frac{\pi}{4}| \right] \right]$$

$$= \frac{1}{2} \left[|\sin \frac{\pi}{4} + \cos \frac{\pi}{4}| - \frac{1}{2} \left[|\cos 0| - \frac{1}{2} \left[|\cos \frac{5\pi}{4} + \sin \frac{5\pi}{4}| + \frac{1}{2} \left[|\cos \frac{\pi}{4} + \sin \frac{\pi}{4}| \right] \right] \right]$$

- 2. Given $x = y^2 3$ and x = 2y
- a) Sketch the graphs of these two curves showing the intersection coordinates. [3]

b) Find the area between two curves. Show your work and give your answer in exact. [3]

$$A = \int_{-1}^{3} (2y - (4^{2}-3)) dy$$

$$= \left[y^{2} - \frac{1}{3}y^{3} + 3y \right]_{x=-1}^{x=3}$$

$$= \left[3^{2} - \frac{1}{3}(3)^{3} + 9 \right] - \left[1 + \frac{1}{3} - 3 \right] = \left[\frac{32}{3} \right].$$

- 3. A particle P moves in a straight line with velocity function $v(t) = 3t^2 6t$ cm/sec, $t \ge 0$. The particle is initially 2 cm to the right of O.
- a. Write a formula for the position function s(t). [2]

$$S(x) = \int (3x^2 - 6x) dx = x^3 - 3x^2 + C$$
 $C = 2$

$$S(x) = \int (3x^2 - 6x) dx = x^3 - 3x^2 + 2$$

b. Find the time when the particle changes its direction. [1]

$$3t^2-6t=0$$

 $3t(t-2)=0$ $t=0$ $t=2$ \in Change the direction

c. Sketch the graph of the position function showing clearly the local max, local min, and x-intercept(s)

t=0 ()

d Find the displacement of P after 3 seconds. Show your work and give your answer in exact. [2]

displacement =
$$\int_{0}^{3} (3t^{2}-6t)dt = S(3) - S(0)$$
= 2-2=0 cm

e. Find the total distance of P after 3 seconds. Show your work and gie your answer in exact. [2]

Total dictues =
$$\int_{0}^{2} -(3h^{2}-6t)dt + \int_{2}^{3} (3h^{2}-6t)dt$$

= $\left|S(0) - S(2)\right| + \left|S(3) - S(2)\right| = 4 + 4 = 8.cm$