1. Given the graph of f(x), sketch the graphs of f'(x) and f''(x).

2. Use the graph of f' to sketch a graph of f and the graph of f''.

$$\chi = -2$$
 (Local Mox)
 $\chi = 2$ (Local Min).

Match the graph of f in the left column with that of its derivative in the right column.

Graph of f 1.

(a)

2.

(b)

3.

A

(e)

(d)

Given the graph of f, sketch the graph of f'.

5.

B

6.

- & 8. Use the graph of f' to
 - a. identify the interval(s) on which f is increasing or decreasing
 - b. estimate the values of x at which f has a relative maximum or minimum.

Increase: (-8,0) V (1,00)

Decreasing: (0,1)

1. Estimate the slope of tangent line at the points (x_1,y_1) and (x_2,y_2)

$$(\chi_1, y_1): f'(\chi_1) = 0$$

 $(\chi_2, y_2): f'(\chi_2) \approx \frac{1}{2}$

$$(x_1, y_1): f(x_1) = 0$$
 $(x_1, y_1): f(x_1) = 2$ $(x_2, y_2): f(x_2) \approx \frac{1}{2}$ $(x_2, y_2): f(x_2) \approx 2$

$$(x_1, y_1): f(x_1) = \frac{3}{3}$$
 $(x_1, y_1): f(x_1) = \frac{3}{2}$

$$(x_1, y_1): f'(x_1) = \frac{3}{2}$$

$$(\chi_2, g_2): f'(\chi_2) \approx \frac{3}{4} \qquad (\chi_2, g_2): f'(\chi_2) = \frac{3}{2}$$

$$(x_2, y_2): f(x_2) = \frac{3}{2}$$

2. For each function given, sketch the graph of the derivative function. Locate x-Intercepts on the derivative graph by recalling that the derivative is zero if the tangent line is horizontal and has a high point or a low point where the derivative is steepest.

