Sequences and Series

1. If the sequence $15,5 x-4, \frac{x}{5}$ is arithmetic, what is the exact value of x ?
2. Write each series in sigma notation.
a. $-5-2+1+\ldots+124$
b. $\frac{7}{18}+\frac{14}{19}+\frac{21}{20}+\ldots+\frac{63}{26}$
c. $2+\frac{5}{2}+\frac{25}{8}+\frac{125}{32}+\frac{625}{128}$
3. The first term of an infinite geometric sequence is 98 , while the third term is 32 . There are two possible sequences. Find the sum of each sequence.

Mathematical Induction

How every induction proof goes:
Step 1: State Proposition \qquad _.
Step 2: Show that the proposition \qquad is true.
Step 3: Assume that \qquad is true and show that thus \qquad is true.
Step 4: Make the conclusion:
"Hence if \qquad is true, then \qquad is true.

Since \qquad is true, then \qquad is true for all $a \in \mathbb{Z}, n \geq a$."
4. Consider the sum $S_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots+\frac{1}{n \cdot(n+1)}$
a. Make a conjecture about the sum.
b. Use mathematical induction to prove your conjecture.
5. Evaluate

$$
\text { a. } 4 e^{i\left(\frac{(-2 \pi}{3}\right)}
$$

b. i^{-i}

DeMoivre's Theorem: $(|z| \text { cis } \theta)^{n}=$ \qquad for all rational n.

6 . Find the exact value of $(\sqrt{3}+i)^{8}$.

The nth roots of a complex number z are the solutions of $z^{n}=c$.

4a. Write 16 in polar form.
b. Hence, find the $4^{\text {th }}$ roots of 16 .

- There are exactly \qquad $\mathrm{n}^{\text {th }}$ roots of c .
- If c is real, then the complex roots must occur in \qquad pairs.
- The roots of z^{n} will all have the same modulus which is \qquad _.
- On an Argand diagram, the roots all lie on a circle with radius $r=$ \qquad , and the roots are equally spaced around that circle.

Linear Systems

7. Describe the possible solutions for the system and when they occur.
a. $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 14 & 10-2 a\end{array}\right]$
b. $\left\{\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 10-2 a\end{array}\right]$
c. $\left\lfloor\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 7-a & 12\end{array}\right]$
d. $\left.\left\lvert\, \begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 7-a & 0\end{array}\right.\right]$

The Binomial Theorem

8. Find a if the coefficient of x^{7} in the expansion of $(3 x+a)^{12}$ is -228096 .
