2014 P1 TZ1

3. [Maximum mark: 5]

Consider $a = \log_2 3 \times \log_3 4 \times \log_4 5 \times ... \times \log_{31} 32$. Given that $a \in \mathbb{Z}$, find the value of a.

13. [Maximum mark: 17]

A geometric sequence $\{u_n\}$, with complex terms, is defined by $u_{n+1} = (1+i)u_n$ and $u_1 = 3$.

- (a) Find the fourth term of the sequence, giving your answer in the form x + yi, $x, y \in \mathbb{R}$. [3]
- (b) Find the sum of the first 20 terms of $\{u_n\}$, giving your answer in the form $a \times (1+2^m)$ where $a \in \mathbb{C}$ and $m \in \mathbb{Z}$ are to be determined. [4]

A second sequence $\{v_n\}$ is defined by $v_n = u_n u_{n+k}, k \in \mathbb{N}$.

- (c) (i) Show that {v_n} is a geometric sequence.
 - (ii) State the first term.
 - (iii) Show that the common ratio is independent of k.

A third sequence $\{w_n\}$ is defined by $w_n = |u_n - u_{n+1}|$.

- (d) (i) Show that $\{w_n\}$ is a geometric sequence.
 - (ii) State the geometrical significance of this result with reference to points on the complex plane.[5]

[5]

2014 P1 TZ2

7. [Maximum mark: 7]

Consider the complex numbers u = 2 + 3i and v = 3 + 2i.

- (a) Given that $\frac{1}{u} + \frac{1}{v} = \frac{10}{w}$, express w in the form a + bi, $a, b \in \mathbb{R}$. [4]
- (b) Find w^* and express it in the form $re^{i\theta}$. [3]

2014 P2 TZ1

4. [Maximum mark: 6]

A system of equations is given below.

$$x+2y-z=2$$
$$2x+y+z=1$$
$$-x+4y+az=4$$

- (a) Find the value of a so that the system does not have a unique solution.
- [2]

[4]

(b) Show that the system has a solution for any value of a.

7. [Maximum mark: 8]

Prove, by mathematical induction, that $7^{8n+3} + 2$, $n \in \mathbb{N}$, is divisible by 5.

2014 P2 TZ2

- 1. [Maximum mark: 6]
 - (a) (i) Find the sum of all integers, between 10 and 200, which are divisible by 7.
 - (ii) Express the above sum using sigma notation.

*Γ4*7

An arithmetic sequence has first term 1000 and common difference of -6. The sum of the first n terms of this sequence is negative.

(b) Find the least value of n.

[2]

5. [Maximum mark: 6]

Find the coefficient of x^{-2} in the expansion of $(x-1)^3 \left(\frac{1}{x} + 2x\right)^6$.

2015 P1 TZ2

- **7.** [Maximum mark: 9]
 - (a) Find three distinct roots of the equation $8z^3 + 27 = 0$, $z \in \mathbb{C}$ giving your answers in modulus-argument form.

[6]

The roots are represented by the vertices of a triangle in an Argand diagram.

- (b) Show that the area of the triangle is $\frac{27\sqrt{3}}{16}$. [3]
- 9. [Maximum mark: 8]
 - (a) State the set of values of a for which the function $x \mapsto \log_a x$ exists, for all $x \in \mathbb{R}^+$. [2]
 - (b) Given that $\log_x y = 4\log_y x$, find all the possible expressions of y as a function of x. [6]

Markschemes

2014 P1 TZ1

3.
$$\frac{\log 3}{\log 2} \times \frac{\log 4}{\log 3} \times \dots \times \frac{\log 32}{\log 31}$$

$$= \frac{\log 32}{\log 2}$$

$$= \frac{5\log 2}{\log 2}$$

$$= 5$$
hence $a = 5$
(M1)

A1

[5 marks]

Note: Accept the above if done in a specific base $eg \log_2 x$

13. (a)
$$r = 1 + i$$

 $u_4 = 3(1+i)^3$
 $= -6 + 6i$

M1 A1

[3 marks]

(b)
$$S_{20} = \frac{3((1+i)^{20}-1)}{i}$$

= $\frac{3((2i)^{10}-1)}{i}$

(M1)

(M1)

(A1)

Note: Only one of the two M1s can be implied. Other algebraic methods may be seen.

$$=\frac{3(-2^{10}-1)}{i}$$
$$=3i(2^{10}+1)$$

(A1) A1

[4 marks]

(c) (i) METHOD 1

$$v_n = (3(1+i)^{n-1})(3(1+i)^{n-1+k})$$

$$9(1+i)^k (1+i)^{2n-2}$$

M1

A1

$$=9(1+i)^{k}((1+i)^{2})^{n-1}\left(=9(1+i)^{k}(2i)^{n-1}\right)$$

this is the general term of a geometrical sequence

R1AG

Notes: Do not accept the statement that the product of terms in a geometric sequence is also geometric unless justified further.

If the final expression for v_n is $9(1+i)^k (1+i)^{2n-2}$ award M1.A1R0.

METHOD 2

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1}u_{n+k+1}}{u_nu_{n+k}}$$
$$= (1+i)(1+i)$$

M1

A1

this is a constant, hence sequence is geometric

R1AG

Note: Do not allow methods that do not consider the general term.

(ii)
$$9(1+i)^k$$

A1

AI

(iii) common ratio is
$$(1+i)^2 (=2i)$$
 (which is independent of k)

[5 marks]

continued ...

(d) (i) METHOD 1

$$w_{n} = \left| 3(1+i)^{n-1} - 3(1+i)^{n} \right|$$

$$= 3\left| 1+i \right|^{n-1} \left| 1 - (1+i) \right|$$

$$= 3\left| 1+i \right|^{n-1}$$

$$\left(= 3\left(\sqrt{2}\right)^{n-1} \right)$$

$$A1$$

this is the general term for a geometric sequence

R1AG

METHOD 2

$$w_n = |u_n - (1+i)u_n|$$

$$= |u_n| - i|$$

$$= |u_n|$$

$$= |3(1+i)^{n-1}|$$

$$= 3 |(1+i)|^{n-1}$$

$$= 3 (\sqrt{2})^{n-1}$$
this is the general term for a geometric sequence

R1AG

this is the general term for a geometric sequence

Note: Do not allow methods that do not consider the general term.

 distance between successive points representing u_n in the complex plane forms a geometric sequence *R1*

Note: Various possibilities but must mention distance between successive points.

[5 marks]

Total [17 marks]

2014 P1 TZ2

7. (a) METHOD 1

$\frac{1}{2+3i} + \frac{1}{3+2i} = \frac{2-3i}{4+9} + \frac{3-2i}{9+4}$	M1A1
$\frac{10}{w} = \frac{5-5i}{13}$	AI
$w = \frac{130}{5 - 5i}$	
$=\frac{130\times5\times(1+i)}{50}$	
w = 13 + 13i	A1

[4 marks]

METHOD 2

$$\frac{1}{2+3i} + \frac{1}{3+2i} = \frac{3+2i+2+3i}{(2+3i)(3+2i)}$$

$$\frac{10}{w} = \frac{5+5i}{13i}$$

$$\frac{w}{10} = \frac{13i}{5+5i}$$

$$w = \frac{130i}{(5+5i)} \times \frac{(5-5i)}{(5-5i)}$$

$$= \frac{650+650i}{50}$$

$$= 13+13i$$
A1

[4 marks]

(b) $w^* = 13 - 13i$ A1 $z = \sqrt{338}e^{-\frac{\pi_i}{4}} \left(= 13\sqrt{2} e^{-\frac{\pi_i}{4}} \right)$ A1A1

Note: Accept $\theta = \frac{7\pi}{4}$.

Do not accept answers for θ given in degrees.

[3 marks]

Total [7 marks]

4. (a) $\begin{cases} x + 2y - z = 2 \\ 2x + y + z = 1 \\ -x + 4y + az = 4 \end{cases}$

$$\rightarrow \begin{bmatrix}
x+2y-z=2\\
-3y+3z=-3\\
6y+(a-1)z=6
\end{bmatrix}$$
M1A1

$$\rightarrow \begin{bmatrix}
x+2y-z=2\\ -3y+3z=-3\\ (a+5)z=0
\end{bmatrix}$$
A1

(or equivalent)

if not a unique solution then a = -5 A1

Note: The first M1 is for attempting to eliminate a variable, the first A1 for obtaining two expression in just two variables (plus a), and the second A1 for obtaining an expression in just a and one other variable

[4 marks]

(b) if a = -5 there are an infinite number of solutions as last equation always true

and if $a \neq -5$ there is a unique solution

R1

hence always a solution

AG

[2 marks]

Total [6 marks]

7. if
$$n = 0$$

 $7^3 + 2 = 345$ which is divisible by 5, hence true for n = 0

A1

Note: Award $A\theta$ for using n=1 but do not penalize further in question.

assume true for n = k

M1

R1

Note: Only award the M1 if truth is assumed.

so
$$7^{8k+3} + 2 = 5p$$
, $p \in \bullet$ A1
if $n = k + 1$
 $7^{8(k+1)+3} + 2$ M1
 $= 7^8 7^{8k+3} + 2$ M1
 $= 7^8 (5p-2) + 2$ A1
 $= 7^8 .5p - 2.7^8 + 2$
 $= 7^8 .5p - 11529600$
 $= 5(7^8 p - 2305920)$ A1

hence if true for n=k, then also true for n=k+1. Since true for n=0, then true for all $n \in \bullet$

[8 marks]

Note: Only award the R1 if the first two M1s have been awarded.

2014 P2 TZ2

1. (a) (i) n = 27

(A1)

METHOD 1

$$S_{27} = \frac{14 + 196}{2} \times 27 \tag{M1}$$

= 2835 A1

METHOD 2

$$S_{27} = \frac{27}{2}(2 \times 14 + 26 \times 7) \tag{M1}$$

= 2835 A1

METHOD 3

$$S_{27} = \sum_{n=1}^{27} 7 + 7n \tag{M1}$$

$$= 2835 \tag{M1}$$

(ii) $\sum_{n=1}^{27} (7+7n)$ or equivalent A1

Note: Accept $\sum_{n=2}^{28} 7n$

[4 marks]

(b)
$$\frac{n}{2}(2000-6(n-1))<0$$
 (M1)
 $n > 334.333$
 $n = 335$ A1

Note: Accept working with equalities.

[2 marks]

Total [6 marks]

5. expanding
$$(x-1)^3 = x^3 - 3x^2 + 3x - 1$$

$$expanding \left(\frac{1}{x} + 2x\right)^6 \text{ gives}$$

$$64x^6 + 192x^4 + 240x^2 + \frac{60}{x^2} + \frac{12}{x^4} + \frac{1}{x^6} + 160$$
(M1)A1A1

Note: Award (M1) for an attempt at expanding using binomial. Award A1 for $\frac{60}{x^2}$. Award A1 for $\frac{12}{x^4}$.

$$\frac{60}{x^2} \times -1 + \frac{12}{x^4} \times -3x^2$$
 (M1)

Note: Award (M1) only if both terms are considered.

therefore coefficient χ^{-2} is -96

Note: Accept $-96x^{-2}$

Note: Award full marks if working with the required terms only without giving the entire expansion.

[6 marks]

7. (a) METHOD 1

$$z^{3} = -\frac{27}{8} = \frac{27}{8} (\cos \pi + i \sin \pi)$$

$$= \frac{27}{8} (\cos(\pi + 2n\pi) + i \sin(\pi + 2n\pi))$$

$$z = \frac{3}{2} \left(\cos\left(\frac{\pi + 2n\pi}{3}\right) + i \sin\left(\frac{\pi + 2n\pi}{3}\right) \right)$$

$$z_{1} = \frac{3}{2} \left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3} \right),$$

$$z_{2} = \frac{3}{2} (\cos\pi + i \sin\pi),$$

$$z_{3} = \frac{3}{2} \left(\cos\frac{5\pi}{3} + i \sin\frac{5\pi}{3} \right).$$
A2

Note: Accept $-\frac{\pi}{3}$ as the argument for z_3 .

Note: Award A1 for 2 correct roots.

Note: Allow solutions expressed in Eulerian $(re^{i\theta})$ form.

Note: Allow use of degrees in mod-arg (r-cis) form only.

[6 marks]

METHOD 2

$$8z^3 + 27 = 0$$

 $\Rightarrow z = -\frac{3}{2}$ so $(2z + 3)$ is a factor

Attempt to use long division or factor theorem: M1

$$\Rightarrow 8z^3 + 27 \equiv (2z+3)(4z^2 - 6z + 9)$$

$$\Rightarrow 4z^2 - 6z + 9 = 0$$

Attempt to solve quadratic: M1

$$z = \frac{3 \pm 3\sqrt{3}\,\mathrm{i}}{4}$$

$$z_1 = \frac{3}{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right),$$

$$z_{2} = \frac{3}{2} (\cos \pi + i \sin \pi),$$

$$z_{3} = \frac{3}{2} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right).$$
A2

2(3 3)

Note: Accept $-\frac{\pi}{3}$ as the argument for z_3 .

Note: Award A1 for 2 correct roots.

Note: Allow solutions expressed in Eulerian $(re^{i\theta})$ form.

Note: Allow use of degrees in mod-arg (r-cis) form only.

[6 marks]

METHOD 3

$$8z^3 + 27 = 0$$

Substitute
$$z = x + iy$$

$$8(x^3 + 3ix^2y - 3xy^2 - iy^3) + 27 = 0$$

$$\Rightarrow 8x^3 - 24xy^2 + 27 = 0$$
 and $24x^2y - 8y^3 = 0$

Attempt to solve simultaneously: M1

$$8y(3x^2-y^2)=0$$

$$y = 0, y = x\sqrt{3}, y = -x\sqrt{3}$$

$$\Rightarrow \left(x = -\frac{3}{2}, y = 0\right), x = \frac{3}{4}, y = \pm \frac{3\sqrt{3}}{4}$$

$$z_1 = \frac{3}{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right),$$

$$z_2 = \frac{3}{2} (\cos \pi + i \sin \pi),$$

$$z_3 = \frac{3}{2} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right).$$
 A2

Note: Accept $-\frac{\pi}{3}$ as the argument for z_3 .

Note: Award A1 for 2 correct roots.

Note: Allow solutions expressed in Eulerian $(re^{i\theta})$ form.

Note: Allow use of degrees in mod-arg (r-cis) form only.

[6 marks]

M1

(b) EITHER

Valid attempt to use area =
$$3\left(\frac{1}{2}ab\sin C\right)$$

 = $3\times\frac{1}{2}\times\frac{3}{2}\times\frac{3}{2}\times\frac{\sqrt{3}}{2}$
 A1A1

Note: Award A1 for correct sides, A1 for correct sin C.

OR

Valid attempt to use area =
$$\frac{1}{2}$$
 base \times height
area = $\frac{1}{2} \times \left(\frac{3}{4} + \frac{3}{2}\right) \times \frac{6\sqrt{3}}{4}$
A1A1

Note: A1 for correct height, A1 for correct base.

THEN

$$=\frac{27\sqrt{3}}{16}$$
 AG [3 marks] Total [9 marks]

9. (a)
$$a > 0$$

$$a \pm 1$$

A1

A1

[2 marks]

$$a \neq 1$$

(b) METHOD 1

$$\log_x y = \frac{\ln y}{\ln x}$$
 and $\log_y x = \frac{\ln x}{\ln y}$

M1A1

Note: Use of any base is permissible here, not just "e".

$$\left(\frac{\ln y}{\ln x}\right)^2 = 4$$

$$\ln y = \pm 2 \ln x$$

$$y = x^2$$
 or $\frac{1}{x^2}$

METHOD 2

$$\log_y x = \frac{\log_x x}{\log_x y} = \frac{1}{\log_x y}$$

$$\left(\log_x y\right)^2 = 4$$

$$\log_x y = \pm 2$$

$$y = x^2 \text{ or } y = \frac{1}{x^2}$$

Note: The final two A marks are independent of the one coming before.

[6 marks]

Total [8 marks]