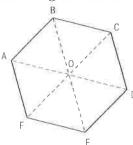
- 1 Draw a diagram to show that the addition of vectors is associative.
- 2 The diagram shows a regular hexagon ABCDEF.



Using only vectors defined by the vertices of the hexagon, copy and complete these statements.

a
$$\overrightarrow{AF} + \overrightarrow{BC} = \dots$$

$$\mathbf{b} \quad \frac{1}{2} \overrightarrow{AD} + \overrightarrow{ED} = \dots$$

c
$$2\overline{FE} - \overline{AF} - \overline{FE} = \dots$$

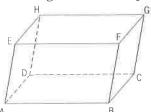
$$\mathbf{d} \quad \frac{1}{2} \left(\overrightarrow{AD} + \overrightarrow{BE} \right) = \dots$$

e
$$\frac{1}{2}\overrightarrow{FC} + \overrightarrow{BC} = ...$$

f $-2\overrightarrow{ED} - \overrightarrow{AF} + \overrightarrow{AB} = ...$

$$\mathbf{f}$$
 $-2\overrightarrow{ED} - \overrightarrow{AF} + \overrightarrow{AB} = ...$

3 The diagram shows a parallelepiped ABCDEFGH.



- Let $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AD}$ and $\mathbf{w} = \overrightarrow{AG}$. Express each of these vectors in terms of u, v and w.
 - i \overrightarrow{AC}
- ii HB
- iii ĈĔ
- **b** Given that $|\overrightarrow{AD}| = 3$, $|\overrightarrow{AB}| = 4$ and $|\overrightarrow{AC}| = 6$, find
 - i the angle ABC
 - ii the area of the parallelogram ABCD.
- 4 Use the properties of vector addition and scalar multiplication to solve these equations for \mathbf{x}
 - **a** 3x u = 6v + 2u
 - **b** 2(x-u) + 3(u-v) = 0
 - $c \frac{1}{2}(x-u) = \frac{1}{3}(x+v)$

For the cube of edge length 8 cm, find

- i. the length of DB.
- ii. the inclination of the diagonal BH.

