The graph shows the area bounded by $f(x) = \sqrt{x} \qquad \text{if } \alpha \in A_{\alpha}(x) \text{ for }$

Set up the integrals for the volume that Would be generated by revolving this Curve segments around the following

Axes of rotation;

b.
$$y = -1$$

d. y-axis

$$V = \pi \int_{0}^{2} (6)^{2} - (2+y^{2})^{2} dy.$$

$$V = \pi \left(\frac{2}{(s-y^2)^2 - (1)^2} \right) dy.$$

$$y = 4 \qquad \text{Finner} : 4 - \sqrt{x}$$

Washer

Router:

Router : 6.

hinner:

IB Calculus Exit Slip

Name: <u>Ley</u>.

The region M is enclosed by the function $y = x^2$ and y = 3x.

a. Sketch the solid generated by revolving M about the x-axis and set up the integral of the volume.

 $V = \pi \int_0^3 (3x)^2 - (x^2)^2 dx$

 Sketch the solid generated by revolving M about the y-axis and set up the integral of the volume.

 $f = \frac{3}{\pi} \left(\left(\sqrt{3} \right)^2 - \left(\frac{3}{3} \right)^2 \right) dg$

c. Sketch the solid generated by revolving M about y= -1 and set up the integral of the volume.

d. Sketch the solid generated by revolving M about x = -1 and set up the integral of the volume.

 $V = \frac{4}{3} + 1$ $\pi \int_{0}^{4} ((\sqrt{y}+1)^{\frac{1}{2}} - (\frac{4}{3}+1)^{\frac{1}{2}})$

e. Sketch the solid generated by revolving M about y= 10 and set up the integral of the volume.

Router = 10-X2 Finner = 10-3X

f. Sketch the solid generated by revolving M about x = 6 and set up the integral of the volume.

IB Calculus

More	practice	of	Volumes	(5	problems))
				£	L. 4-101110	8

	401100	of Animules	υū
Name:		Kog	
			_

Period:

The region bounded by the curve $y=2-x^2$ and $y=x^2$ is revolved about y-axis. Sketch the solid and set up the integral of the volume by shell method.

- $V = 2\pi \int X = -2x^{2} \int dx$ $V = \pi \int (\sqrt{3})^{2} dy + \pi \int (\sqrt{2}-y)^{2} dy$
- The region bounded by the curve $y = x^2$ and y = 4x is revolved about x-axis. Sketch the solid and set up the integral of the volume by washer method.

3. The region bounded by the curve $y=x^2$ and y=4x is revolved about y-axis. Sketch the solid and set up the integral of the volume by washer method.

The region bounded by the curve $y=x^2$ and y=4x is revolved about x= -2. Sketch the solid and set up the integral of the volume by shell method.

The region bounded by the curve $y = x^2$ and y = 4x is revolved about y = 4. Sketch the solid and set up the integral of the volume by a method of your choice.

